Клинический вестник ФМБЦ им. А.И. Бурназяна

ISSN 2782-6430 (print)

Федеральное государственное бюджетное учреждение
«Государственный научный центр Российской Федерации –
Федеральный медицинский биофизический центр имени А.И.Бурназяна»

Журнал издается на русском языке.
Формат – А4.
Периодичность выхода журнала –  4 раза в год.

Выпуск №2 2025 год

Клинический вестник ФМБЦ им. А.И. Бурназяна. 2024. № 4

В.В. Сверчков, Е.В. Быков

ДИНАМИКА ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА
ПОСЛЕ СИЛОВЫХ ТРЕНИРОВОК С ОГРАНИЧЕНИЕМ КРОВОТОКА
У ЛИЦ С МЕТАБОЛИЧЕСКИМ СИНДРОМОМ

Уральский государственный университет физической культуры, кафедра спортивной медицины  и физической реабилитации, г. Челябинск, Россия

Контактное лицо: Сверчков Вадим Владимирович: bykov@uralgufk.ru

Резюме
Известно, что вегетативная дисфункция связана с метаболическими заболеваниями. Физическая активность оказывает благотворное влияние как на метаболическое здоровье, так и на вариабельность сердечного ритма (ВСР). Однако в научной литературе вопрос о влиянии тренировок с отягощениями на показатели ВСР неоднозначен.
Цель исследования: оценить влияние низкоинтенсивных силовых тренировок с ограничением кровотока на показатели ВСР у мужчин с метаболическим синдромом (МС).
Материалы и методы: проанализированы результаты влияния различных режимов тренировок с отягощениями на 60 мужчинах с МС. Испытуемые были разделены на три группы: низкоинтенсивная силовая тренировка в сочетании с ограничением кровотока (НИОК; n = 20), высокоинтенсивная силовая тренировка без ограничения кровотока (ВИ; n = 20), низкоинтенсивная силовая тренировка без ограничения кровотока (НИ; n = 20). Тренировки проводились 2 раза в неделю на протяжении 12 недель. До и после исследования оценивались временные и частотные показатели ВСР.
Результаты исследования. После исследования наблюдалось увеличение показателей SDNN для группы НИОК (p = 0,000; d Коэна = 0,69), для группы ВИ (p = 0,000; d Коэна = 0,83), для группы НИ (p = 0,016; d Коэна = 0,22) повышение RMSSD для группы НИОК (p = 0,000; d Коэна = 0,67), для группы ВИ (p = 0,000; d Коэна = 0,87), для группы НИ (p = 0,027; d Коэна = 0,26), а также повышение pNN50 для группы НИОК (p = 0,000; d Коэна = 0,58), для группы ВИ (p = 0,000; d Коэна = 0,53), для группы НИ (p = 0,079; d Коэна = 0,14). Также наблюдались статистически значимые изменения (p ˂ 0,05) для частотных параметров ВСР для групп НИОК и ВИ.
Выводы. Тренировки с отягощениями, в том числе в сочетании с ограничением кровотока, позитивно влияют на ВСР у мужчин с МС.

Ключевые слова: силовые тренировки с ограничением кровотока, тренировки с отягощениями, вариабельность сердечного ритма, метаболический синдром

Для цитирования: Сверчков В.В., Быков Е.В. Динамика вариабельности сердечного ритма после силовых тренировок с ограничением кровотока у лиц с метаболическим синдромом // Клинический вестник ФМБЦ им. А.И. Бурназяна 2024. №4. С. 13–19. DOI: 10.33266/2782-6430-2024-4-13-19

 

СПИСОК ИСТОЧНИКОВ

  1. Guembe M.J., Fernandez-Lazaro C.I., Sayon-Orea C., Toledo E., Moreno-Iribas C. RIVANA Study Investigators. Risk for Cardiovascular Disease Associated with Metabolic Syndrome and its Components: a 13-year Prospective Study in the RIVANA Cohort. Cardiovasc Diabetol. 2020 Nov 22;19;1:195. doi: 10.1186/s12933-020-01166-6.
  2. Shin J.A., Lee J.H., Lim S.Y., Ha H.S., Kwon H.S., Park Y.M., et al. Metabolic Syndrome as a Predictor of type 2 Diabetes, and its Clinical Interpretations and Usefulness. J Diabetes Investig. 2013 Jul 8;4;4:334-43. doi: 10.1111/jdi.12075.
  3. Valizadeh A., Nikoohemmat M., Ebadinejad A., Soltani S., Tape P.M.K., Sohrabi A., et al. Metabolic Syndrome as a Risk Factor for the Development of Kidney Dysfunction: a Meta-Analysis of Observational Cohort Studies. J Diabetes Metab Disord. 2023 Nov 23;23;1:215-227. doi: 10.1007/s40200-023-01348-5.
  4. Norris P., Gow J., Arthur T., Conway A., Fleming FJ, Ralph N. Metabolic Syndrome and Surgical Complications: a Systematic Review and Meta-Analysis of 13 Million Individuals. Int J Surg. 2024 Jan 1;110;1:541-553. doi: 10.1097/JS9.0000000000000834.
  5. Ibraheem Shelash Al-Hawary S., Ali Alzahrani A., Ghaleb Maabreh H., Abed Jawad M., Alsaadi S.B., Kareem Jabber N., et al. The Association of Metabolic Syndrome with Telomere Length as a Marker of Cellular Aging: a Systematic Review and Meta-Analysis. Front Genet. 2024 Jul 9;15:1390198. doi: 10.3389/fgene.2024.1390198.
  6. Zhan Z.Q., Chen Y.Z., Huang Z.M., Luo Y.H., Zeng J.J., Wang Y., et al. Metabolic Syndrome, its Components, and Gastrointestinal Cancer Risk: a Meta-Analysis of 31 Prospective Cohorts and Mendelian Randomization Study. J Gastroenterol Hepatol. 2024 Apr;39;4:630-641. doi: 10.1111/jgh.16477.
  7. Zhang F., Liu L., Zhang C., Ji S., Mei Z., Li T. Association of Metabolic Syndrome and its Components with Risk of Stroke Recurrence and Mortality: a Meta-Analysis. Neurology. 2021 Aug 17;97;7:e695-e705. doi: 10.1212/WNL.0000000000012415.
  8. Yu T.Y., Lee M.K. Autonomic Dysfunction, Diabetes and Metabolic Syndrome. J Diabetes Investig. 2021 Dec;12;12:2108-2111. doi: 10.1111/jdi.13691.
  9. Ortiz-Guzmán J.E., Mollà-Casanova S., Arias-Mutis Ó.J., Bizy A., Calvo C., Alberola A., et al. Differences in Long-Term Heart Rate Variability between Subjects with and without Metabolic Syndrome: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis. 2023 May 9;10;5:203. doi: 10.3390/jcdd10050203.
  10. Ortiz-Guzmán J.E., Mollà-Casanova S., Serra-Añó P., Arias-Mutis Ó.J., Calvo C., Bizy A., et al. Short-Term Heart Rate Variability in Metabolic Syndrome: a Systematic Review and Meta-Analysis. J Clin Med. 2023 Sep 19;12;18:6051. doi: 10.3390/jcm12186051.
  11. Azulay N., Olsen R.B., Nielsen C.S., Stubhaug A., Jenssen T.G., Schirmer H., et al. Reduced Heart Rate Variability is Related to the Number of Metabolic Syndrome Components and Manifest Diabetes in the Sixth Tromsø Study 2007-2008. Sci Rep. 2022 Jul 14;12;1:11998. doi: 10.1038/s41598-022-15824-0.
  12. Blackwood S.J., Tischer D., van de Ven M.P.F., Pontén M., Edman S., Horwath O., et al. Elevated Heart Rate and Decreased Muscle Endothelial Nitric Oxide Synthase in Early Development of Insulin Resistance. Am J Physiol Endocrinol Metab. 2024 Aug 1;327;2:E172-E182. doi: 10.1152/ajpendo.00148.2024.
  13. Schoenfeld B.J., Ogborn D., Piñero A., Burke R., Coleman M., Rolnick N. Fiber-Type-Specific Hypertrophy with the Use of Low-Load Blood Flow Restriction Resistance Training: a Systematic Review. J Funct Morphol Kinesiol. 2023 Apr 27;8;2:51. doi: 10.3390/jfmk8020051.
  14. Maga M., Wachsmann-Maga A., Batko K., Włodarczyk A., Kłapacz P., Krężel J., et al. Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis – a Systematic Review with Meta-Analysis. Biomedicines. 2023 May 31;11;6:1601. doi: 10.3390/biomedicines11061601.
  15. Russo A., Boppre G., Schmidt C., Bohn L. Chronic Hemodynamic Adaptations Induced by Resistance Training with and Without Blood flow Restriction in Adults: a Systematic Review and Meta-Analysis. Sports Med Health Sci. 2023 Sep 16;5;4:259-268. doi: 10.1016/j.smhs.2023.09.006.
  16. Zhang T., Tian G., Wang X. Effects of Low-Load Blood Flow Restriction Training on Hemodynamic Responses and Vascular Function in Older Adults: a Meta-Analysis. Int J Environ Res Public Health. 2022 May 31;19;11:6750. doi: 10.3390/ijerph19116750.
  17. Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120;16:1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.
  18. Randomizer. URL: https://www.randomizer.org/.
  19. DeBoer M., Gurka M. Clinical Utility of Metabolic Syndrome Severity Scores: Considerations for Practitioners. Diabetes Metab Syndr Obes. 2017;10:65-72. https://doi.org/10.2147/DMSO.S101624
  20. Ramos-Campo D.J., Benito-Peinado P.J., Andreu-Caravaca L., Rojo-Tirado M.A., Rubio-Arias J.Á. Efficacy of Split Versus Full-Body Resistance Training on Strength and Muscle Growth: a Systematic Review with Meta-Analysis. J Strength Cond Res. 2024 Jul 1;38;7:1330-1340. doi: 10.1519/JSC.0000000000004774.
  21. Bastos V., Machado S., Teixeira D. Feasibility and Usefulness of Repetitions-in-Reserve Scales for Selecting Exercise Intensity: a Scoping Review. Percept Mot Skills. 2024 Jun; 131;3:940-970. https://doi.org/10.1177/00315125241241785
  22. Epley B. Poundage Chart: Boyd Epley Workout. Lincoln, NE, USA, Body Enterprises Publ., 1985.
  23. Aniceto R.R., da Silva Leandro L. Practical Blood Flow Restriction Training: New Methodological Directions for Practice and Research. Sports Med Open. 2022;8;1:87. https://doi.org/10.1186/s40798-022-00475-2
  24. Freitas E.D.S., Miller R.M., Heishman A.D., Ferreira-Júnior J.B., Araújo J.P., Bemben M.G. Acute Physiological Responses to Resistance Exercise with Continuous Versus Intermittent Blood Flow Restriction: a Randomized Controlled Trial. Front Physiol. 2020;11:132-144. https://doi.org/10.3389/fphys.2020.00132
  25. Cumming G. Understanding the New Statistics: Effect sizes, Confidence Intervals, and Meta-Analysis. New York, Routledge Publ., 2012.
  26. Grässler B., Thielmann B., Böckelmann I., Hökelmann A. Effects of Different Exercise Interventions on Heart Rate Variability and Cardiovascular Health Factors in Older Adults: a Systematic Review. Eur Rev Aging Phys Act. 2021 Nov 17;18;1:24. doi: 10.1186/s11556-021-00278-6.
  27. Yang F., Ma Y., Liang S., Shi Y., Wang C. Effect of Exercise Modality on Heart Rate Variability in Adults: a Systematic Review and Network Meta-Analysis. Rev Cardiovasc Med. 2024 Jan;9;25;1:9. doi: 10.31083/j.rcm2501009.
  28. Bhati P., Moiz J.A., Menon G.R., Hussain M.E. Does Resistance Training Modulate Cardiac Autonomic Control? A Systematic Review and Meta-Analysis. Clin Auton Res. 2019 Feb;29;1:75-103. doi: 10.1007/s10286-018-0558-3.
  29. Hamasaki H. The Effect of Exercise on Cardiovascular Autonomic Nervous Function in Patients with Diabetes: a Systematic Review. Healthcare (Basel). 2023 Oct 1;11;19:2668. doi: 10.3390/healthcare11192668.
  30. Bhati P., Hussain M.E., Deepak K.K., Masood S., Anand P. Progressive Resistance Training Ameliorates Deteriorating Cardiac Autonomic Dysfunction, Subclinical Inflammation and Endothelial Dysfunction in Type 2 Diabetes Mellitus: a Randomized Control Trial. Diabetes Metab Syndr. 2023 May;17;5:102778. doi: 10.1016/j.dsx.2023.102778.
  31. Turri-Silva N., Garner D.M., Moosavi S.H., Ricci-Vitor A.L., Christofaro D.G.D, Netto Junior J., et al. Effects of Resistance Training Protocols on Nonlinear Analysis of Heart Rate Variability in Metabolic Syndrome. Braz J Med Biol Res. 2018 Jun 11;51;8:e7459. doi: 10.1590/1414-431X20187459.
  32. Farinatti P., Neto S.R., Dias I., Cunha F.A., Bouskela E., Kraemer-Aguiar L.G. Short-Term Resistance Training Attenuates Cardiac Autonomic Dysfunction in Obese Adolescents. Pediatr Exerc Sci. 2016 Aug;28;3:374-80. doi: 10.1123/pes.2015-0191.
  33. Lopes K.G., Farinatti P., Bottino D.A., DE Souza M.D.G.C., Maranhão P.A., Bouskela E., et al. Does Resistance Training with Blood Flow Restriction Affect Blood Pressure and Cardiac Autonomic Modulation in Older Adults? Int J Exerc Sci. 2021 Apr 1;14;3:410-422.
  34. Su Y., Wang F., Wang M., He S., Yang X., Luan Z. Effects of Blood Flow Restriction Training on Muscle Fitness and Cardiovascular Risk of Obese College Students. Front Physiol. 2024 Jan 3;14:1252052. doi: 10.3389/fphys.2023.1252052.
  35. Zhao Y., Zheng Y., Ma X., Qiang L., Lin A., Zhou M. Low-Intensity Resistance Exercise Combined with Blood Flow Restriction is More Conducive to Regulate Blood Pressure and Autonomic Nervous System in Hypertension Patients-Compared with High-Intensity and Low-Intensity Resistance Exercise. Front Physiol. 2022 Apr 20;13:833809. doi: 10.3389/fphys.2022.833809.
  36. De Deus L.A., Neves R.V.P, Corrêa H.L., Reis A.L., Honorato F.S., Silva V.L., et al. Improving the Prognosis of Renal Patients: the Effects of Blood Flow-Restricted Resistance Training on Redox Balance and Cardiac Autonomic Function. Exp Physiol. 2021 Apr;106;4:1099-1109. doi: 10.1113/EP089341.
  37. Bane A., Wilson L., Jumper J., Spindler L., Wyatt P., Willoughby D. Effects of Blood Flow Restriction Resistance Training on Autonomic and Endothelial Function in Persons with Parkinson’s Disease. J Parkinsons Dis. 2024;14;4:761-775. doi: 10.3233/JPD-230259.
  38. Patel K.P., Zheng H. Central Neural Control of Sympathetic Nerve Activity in Heart Failure Following Exercise Training. Am J Physiol Heart Circ Physiol. 2012 Feb 1;302;3:H527-37. doi: 10.1152/ajpheart.00676.2011.
  39. Chowdhary S., Townend J.N. Role of Nitric Oxide in the Regulation of Cardiovascular Autonomic Control. Clin Sci (Lond). 1999 Jul;97;1:5-17.
  40. Sun W., Han Y., Gu S. Effects of Five Types of Exercise on Vascular Function in Postmenopausal Women: a Network Meta-Analysis and Systematic Review of 32 Randomized Controlled Trials. PeerJ. 2024 Jul 15;12:e17621. doi: 10.7717/peerj.17621.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов. 
Финансирование. Исследование не имело спонсорской поддержки.
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 13.05.2024. Принята к публикации: 11.06.2024. 

Прокрутить наверх