Научный журнал ФМБЦ им. А.И. Бурназяна

Клинический вестник

ISSN 2782-6430 (print)

Федеральное государственное бюджетное учреждение
«Государственный научный центр Российской Федерации –
Федеральный медицинский биофизический центр имени А.И.Бурназяна»

Журнал издается на русском языке.
Формат – А4.
Периодичность выхода журнала –  4 раза в год.

Выпуск №1 2024 год

Клинический вестник ФМБЦ им. А.И. Бурназяна. 2022. № 1

Т.А. Астрелина, А.С. Самойлов
АДДИТИВНЫЕ ТЕХНОЛОГИИ 3D-БИОПЕЧАТИ ДЛЯ РЕГЕНЕРАТИВНОЙ МЕДИЦИНЫ
Федеральный медицинский биофизический центр имени А.И. Бурназяна ФМБА России, Москва
Контактное лицо: Астрелина Татьяна Алексеевна, t_astrelina@mail.ru

Резюме
Развитие тканевой инженерии в последнее время связано с использованием аддитивных технологий для производства трансплантатов и применения их в регенеративной медицине. Трехмерная 3D биопечать открывает большие перспективы для получения сложных, физиологически трехмерных тканевых конструкций и позволяет проектировать, изготавливать такие конструкции с контролем их размера и функции. В обзоре рассмотрены три основных метода трехмерной биопечати: экструзия, капельная и лазерная биопечать, каждая из которых имеет свои преимущества и недостатки. Полученные тканевые конструкции, созданные с помощью трехмерной 3D биопечати, открывают новые возможности в тканевой инженерии, регенеративной медицине для исследователей.
Ключевые слова: аддитивные технологии, 3D-биопечать, биопринтер, регенеративная медицина, биоматериал, тканеинженерные конструкции
Для цитирования: Астрелина Т.А., Самойлов А.С. Аддитивные технологии 3d-биопечати для регенеративной медицины // Клинический вестник ФМБЦ им. А.И. Бурназяна 2022. № 1. С. 5–12. DOI: 10.33266/2782-6430-2022-1-5-12

СПИСОК ИСТОЧНИКОВ
1. Strategy for the Development of Additive Technologies for the Period up to 2030. Decree of the Government of the Russian Federation Dated of July 14, 2021, No. 1913-r. (In Russ.). [Стратегия развития аддитивных технологий на период до 2030 года: Распоряжение Правительства Российской Федерации от 14.07.2021 г. N 1913-р.].
2. Jordan F. Betz, Vincent B. Ho., Joel D. Gaston 3D Bioprinting and Its Application to Military Medicine. Military Medicine. 2020;185;9/10:e1510-1519.
3. Rossi G., Manfrin A., Lutolf M.P. Progress and Potential in Organoid Research. Nat. Rev. Genet. 2018;19;11: 671. doi: 10.1038/ s41576-018-0051-9.
4. Duval K., Grover H., Han L.-H., et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017;32;4:266–277. doi: 10.1152/physiol. 00036.2016.
5. Knight E., Przyborski S. Advances in 3D Cell Culture Technologies Enabling Tissue-Like Structures to be Created in Vitro. J. Anat. 2015;227;6:746–756. doi: 10.1111/joa.12257.
6. Hickerson W.L., Compton C., Fletchall S., Smith L.R. Cultured Epidermal Autografts and Allodermis Combination for Permanent Burn Wound Coverage. Burns. 1994;20:S52–56. doi: 10.1016/0305-4179(94)90091-4.
7. Min J.H., Yun I.S., Lew D.H., Roh T.S., Lee W.J: The Use of Matriderm and Autologous Skin Graft in the Treatment of Full Thickness Skin Defects. Arch. Plast. Surg. 2014;41;4:330–336. doi: 10.5999/aps.2014.41.4.330.
8. Zhang J., Wehrle E., Rubert M., Müller R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int. J. Mol. Sci. 2021;22:3971. https://doi.org/10.3390/ijms22083971.
9. Cubo-Mateo N., Gelinsky M. Wound and Skin Healing in Space: The 3D Bioprinting Perspective. Front. Bioeng. Biotechnol. 2021;9:720217. doi: 10.3389/fbioe.2021.720217.
10. Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. The Bioink: a Comprehensive Review on Bioprintable Materials. Biotechnol Adv. 2017;35;2: 217–239. doi: 10.1016/j.biotechadv.2016.12.006.
11. Panwar A., Tan L.P. Current Status of Bioinks for Microextrusion-Based 3D Bioprinting. Molecules. 2016;21;6:685. doi: 10.3390/molecules21060685.
12. Brumberg V., Astrelina T., Malivanova T., Samoilov A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines. 2021;9:1235-1249. https://doi.org/10.3390/biomedicines9091235.
13. Bittner S.M., Smith B.T., Diaz-Gomez L., et al. Fabrication and Mechanical Characterization of 3D Printed Vertical Uniform and Gradient Scaffolds for Bone and Osteochondral Tissue Engineering. Acta. Biomater. 2019;90:37–48. doi: 10.1016/j.actbio.2019.03.041.
14. Wang W., Caetano G., Ambler W.S., et al. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. Materials. 2016;9;12:992. doi: 10.3390/ma9120992.
15. Kolesky D.B., Homan K.A., Skylar-Scott M.A., Lewis J.A. Threedimensional Bioprinting of Thick Vascularized Tissues. Proc. Natl. Acad. Sci. U S A. 2016;113;12:3179–3184. doi: 10.1073/pnas.1521342113.
16. Placone J.K., Engler A.J. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications. Adv. Healthc. Mater. 2018;7;8:1701161. doi: 10.1002/adhm.201701161.
17. Ning L., Chen X. A Brief Review of Extrusion-Based Tissue Scaffold Bio-Printing. Biotechnol J. 2017;12;8:1600671. doi: 10.1002/biot.201600671.
18. Ozbolat I.T., Hospodiuk M. Current Advances and Future Perspectives in Extrusion-Based Bioprinting. Biomaterials. 2016;76:321–343. doi: 10.1016/j.biomaterials.2015.10.076.
19. Skylar-Scott M.A., Mueller J., Visser C.W., Lewis J.A. Voxelated Softmatter Via Multimaterial Multinozzle 3D Printing. Nature. 2019;575:330–335. doi: 10.1038/s41586-019-1736-8.
20. Kang H.-W., Lee S.J., Ko I.K., Kengla C., Yoo J.J., Atala A. A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity. Nat. Biotechnol. 2016;34;3:312–319. doi: 10.1038/nbt.3413.
21. Cross J.D., Ficke J.R., Hsu J.R., Masini B.D., Wenke J.C. Battlefield Orthopaedic Injuries Cause the Majority of Long-Term Disabilities. J. Am. Acad. Orthop. Surg. 2011;19;1:S1–7. doi: 10.5435/00124635-201102001-00002.
22. Corona B.T., Rivera J.C., Owens J.G., Wenke J.C., Rathbone C.R. Volumetric Muscle Loss Leads to Permanent Disability Following Extremity Trauma. J. Rehabil. Res. Dev. 2015;52;7:785–792. doi: 10.1682/JRRD.2014.07.0165.
23. Yan W.-C., Davoodi P., Vijayavenkataraman S., et al. 3D Bioprinting of Skin Tissue: from Pre-processing to Final Product Evaluation. Adv. Drug. Deliv. Rev. 2018;132:270–295. doi: 10.1016/j.addr.2018.07.016.
24. Cubo N., Garcia M., Del Cañizo J.F.,Velasco D., Jorcano J.L. 3D Bioprinting of Functional Human Skin: Production and in Vivo Analysis. Biofabrication. 2016;9;1:015006. doi: 10.1088/1758-5090/9/1/015006.
25. Derr K., Zou J., Luo K., et al. Fully Three-Dimensional Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function. Tissue Eng Part C Methods. 2019;25;6:334–343. doi: 10.1089/ ten.TEC.2018.0318.
26. Gudapati H., Dey M., Ozbolat I. A Comprehensive Review on Dropletbased Bioprinting: Past, Present and Future. Biomaterials. 2016;102:20–42. doi: 10.1016/j.biomaterials.2016.06.012.
27. Ying Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels.  Advanced Materials. Wiley Online Library. 2019. accessed June 12. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma. 201805460.
28. Graham A.D., Olof S.N., Burke M.J., et al. High-Resolution Patterned Cellular Constructs by Droplet-Based 3D Printing. Sci. Rep. 2017;7;1:7004. doi: 10.1038/s41598-017-06358-x.
29. Ozbolat I.T., Moncal K.K., Gudapati H. Evaluation of Bioprinter Technologies. Addit Manuf. 2017;13:179–200. doi: 10.1016/j.addma.2016.10.003.
30. Hölzl K., Lin S., Tytgat L., Vlierberghe S.V., Gu L., Ovsianikov A. Bioink Properties Before, During and after 3D Bioprinting. Biofabrication. 2016;8;3:032002. doi: 10.1088/1758-5090/8/3/032002.
31. Knowlton S., Anand S., Shah T., Tasoglu S. Bioprinting for Neural Tissue Engineering. Trends Neurosci. 2018;41;1:31–46. doi:0.1016/j.tins.2017.11.001.
32. Lee V., Singh G., Trasatti J.P., et al. Design and Fabrication of Human Skin by Three-Dimensional Bioprinting. Tissue Eng Part C Methods. 2013;20;6:473–484. doi: 10.1089/ten.tec.2013.0335.
33. Lee W., Debasitis J.C., Lee V.K., et al. Multi-Layered Culture of Human Skin Fibroblasts and Keratinocytes Through Three-Dimensional Freeform Fabrication. Biomaterials. 2009;30;8:1587–1595. doi: 10.1016/j.biomaterials.2008.12.009.
34. Filardo G., Petretta M., Cavallo C., et al. Patient-Specific Meniscus Prototype Based on 3D Bioprinting of Human Cell-Laden Scaffold. Bone Joint Res. 2019;8;2:101–106. doi: 10.1302/2046-3758.82.BJR-2018-0134.R1.
35. Moon S., Hasan S.K., Song Y.S., et al. Layer by Layer Three-Dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets. Tissue Eng Part C Methods. 2009;16;1:157–166. doi: 10.1089/ten.tec.2009.0179.
36. Kim B.S., Lee J.-S., Gao G., Cho D.-W. Direct 3D Cell-Printing of Human Skin with Functional Transwell System. Biofabrication. 2017;9;2:025034. doi: 10.1088/1758-5090/aa71c8.
37. Norotte C., Marga F.S., Niklason L.E., Forgacs G. Scaffold-Free Vascular Tissue Engineering Using Bioprinting. Biomaterials. 2009;30;30:5910–5917. doi: 10.1016/j.biomaterials.2009.06.034.
38. Christensen K., Xu C., Chai W., Zhang Z., Fu J., Huang Y. Freeform Inkjet Printing of Cellular Structureswith Bifurcations. Biotechnol Bioeng. 2015;112;5:1047–1055. doi: 10.1002/bit.25501.
39. Bohandy J., Kim B.F., Adrian F.J. Metal Deposition from a Supported Metal Film Using an Excimer Laser. J. Appl. Phys. 1986;60;4:1538–1539. doi: 10.1063/1.337287.
40. Hopp B., Smausz T., Kresz N., et al. Survival and Proliferative Ability of Various Living Cell Types after Laser-Induced Forward Transfer. Tissue Eng. 2005;11;11-12:1817–1823.
41. Ringeisen B.R., Chrisey D.B., Piqué A., et al. Generation of Mesoscopic Patterns of Viable Escherichia Coli by Ambient Laser Transfer. Biomaterials. 2002;23;1:161–166. doi: 10.1016/S0142-9612(01) 00091-6.
42. Ringeisen B.R., Kim H., Barron J.A., et al. Laser Printing of Pluripotent Embryonal Carcinoma Cells. Tissue Eng. 2004;10;3–4:483–91. doi: 10.1089/107632704323061843.
43. Wu P.K., Ringeisen B.R. Development of Human Umbilical Vein Endothelial Cell (HUVEC) and Human Umbilical Vein Smooth Muscle Cell (HUVSMC) Branch/Stem Structures on Hydrogel Layers Via Biological Laser Printing (BioLP). Biofabrication. 2010;2;1:014111. doi: 10.1088/1758-5082/2/1/014111.
44. Michael S., Sorg H., Peck C.-T., et al. Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice. PLoS One. 2013;8;3:e57741. doi: 10.1371/journal.pone.0057741.
45. Keriquel V., Oliveira H., Rémy M., et al. In Situ Printing of Mesenchymal Stromal Cells, by Laser-Assisted Bioprinting, for in Vivo Bone Regeneration Applications. Sci. Rep. 2017;7;1:1–10. doi: 10.1038/s41598-017-01914-x.
46. Derakhshanfar S., Mbeleck R., Xu K., Zhang X., Zhong W., Xing M. 3D Bioprinting for Biomedical Devices and Tissue Engineering: a Review of Recent Trends and Advances. Bioact Mater. 2018;3;2:144–156. doi: 10.1016/j.bioactmat.2017.11.008.
47. Catros S., Fricain J.-C., Guillotin B., et al. Laser-Assisted Bioprinting for Creating on-Demand Patterns of Human Osteoprogenitor Cells and Nano-Hydroxyapatite. Biofabrication. 2011;3;2:025001. doi: 10.1088/1758-5082/3/2/025001.
48. Zhang Y.S., Yue K., Aleman J., et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann. Biomed Eng. 2017;45;1:148–163. doi: 10.1007/s10439-016-1612-8.
49. Kelly B.E., Bhattacharya I., Heidari H., Shusteff M., Spadaccini C.M., Taylor H.K. Volumetric Additive Manufacturing Via Tomographic Reconstruction. Science. 2019;363;6431:1075-1079. doi: 10.1126/science.aau7114.
50. Xue D., Zhang J., Wang Y., Mei D. Digital Light Processing-Based 3Dprinting of Cell-Seeding Hydrogel Scaffolds with Regionally Varied Stiffness. ACS Biomater Sci. Eng. 2019;5;9:4825–4833. doi: 10.1021/acsbiomaterials. 9b00696.
51. Grigoryan B., Paulsen S.J., Corbett D.C., et al. Multivascular Networks and Functional Intravascular Topologies Within Biocompatible Hydrogels. Science. 2019;364;6439:458. doi: 10.1126/science. aav9750.
52. Bernal P.N., Delrot P., Loterie D., et al. Volumetric Bioprinting of Complex Living-Tissue Constructs Within Seconds. Adv Mater. 2019;31;42:1904209. doi: 10.1002/adma.201904209.
53. Saliba J., Daou A., Damiati S., Saliba J., El-Sabban M., Mhanna R. Development of Microplatforms to Mimic the in Vivo Architecture of CNS and PNS Physiology and Their Diseases. Genes. 2018;9;6:285. doi: 10.3390/genes9060285.
54. Kang H.W., Lee S.J., Ko I.K., Kengla C., Yoo J.J., Atala A. A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity. Nat. Biotechnol. 2016;34:312–319.
55. Huebsch N., Mooney D.J. Inspiration and Application in the Evolution of Biomaterials. Nature. 2009;462:426–432.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Исследование не имело спонсорской поддержки.
Участие авторов. Cтатья подготовлена с равным участием авторов. 
Поступила: 20.01.2022. Принята к публикации: 01.02.2022. 

Прокрутить наверх