Научный журнал ФМБЦ им. А.И. Бурназяна

Клинический вестник

ISSN 2782-6430 (print)

Федеральное государственное бюджетное учреждение
«Государственный научный центр Российской Федерации –
Федеральный медицинский биофизический центр имени А.И.Бурназяна»

Журнал издается на русском языке.
Формат – А4.
Периодичность выхода журнала –  4 раза в год.

Выпуск №3 2024 год

Клинический вестник ФМБЦ им. А.И. Бурназяна. 2024. № 2

Л.Т. Шимановская1,2, Е.Н. Мисюрина1,3, Е.А. Барях1,3,4, Е.И. Желнова1,3,
Т.С. Чуднова1,3, В.И. Булыгина3, Т.А. Астрелина2

КОРОНАВИРУСНАЯ ИНФЕКЦИЯ COVID-19 У ПАЦИЕНТОВ С ОСТРЫМ
МИЕЛОИДНЫМ ЛЕЙКОЗОМ СТАРШЕЙ ВОЗРАСТНОЙ ГРУППЫ:
ОБЗОР ЛИТЕРАТУРЫ И СОБСТВЕННЫЙ ОПЫТ

 1ГБУЗ ГКБ №52ДЗМ

2ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России, Москва

3Первый МГМУ им.И.М.Сеченова Минздрава России, Москва

4ФГАОУ ВО “Российский Национальный Исследовательский Медицинский Университет им. Н.И. Пирогова” МЗ РФ, Москва

Контактное лицо: Астрелина Татьяна Алексеевна: t_astrelina@mail.ru


Резюме

В представленном литературном обзоре представлены исследования, включая собственные, посвященные особенностям течения коронавирусной инфекции у пациентов с острым миелоидным лейкозом старшей возрастной группы. Пациенты с острым лейкозом, миелодиспластическим синдромом часто старше 65 лет и имеют отягощенный коморбидный фон и имеют глубокий иммунодефицит вследствие основного заболевания, так и полученного противоопухолевого  лечения и отсрочка лечения часто невозможна из-за срочной необходимости начала противоопухолевой терапии. Ведение данной когорты больных с сопутствующим COVID-19 является сложной задачей для гематологов во всем мире и требует междисциплинарного сотрудничества между гематологами и инфекционистами, клиническими фармакологами. Существует необходимость разработки критериев для определения четких показаний к началу противоопухолевого лечения на фоне COVID-19 и оптимальных сроков возобновления следующего курса химиотерапии после перенесенной коронавирусной инфекции. Проведенный анализ литературы  и собственный опыт показал высокую госпитальную летальность с учетом состояния глубокого иммунодефицита больных, несмотря на проводимое лечение COVID-19, вторичных бактериальных и грибковых инфекций и продемонстрировал  необходимость выработки прежде всего профилактических стратегий у пожилых больных с острыми лейкозами.

Ключевые слова: острый миелоидный лейкоз пожилых, коронавирусная инфекция SARS-CoV-2, COVID 19, выживаемость, летальность, прогностические факторы

Для цитирования: Шимановская Л.Т., Мисюрина Е.Н., Барях Е.А., Желнова Е.И., Чуднова Т.С., Булыгина В.И., Астрелина Т.А. Коронавирусная инфекция COVID-19 у пациентов с острым миелоидным лейкозом старшей возрастной группы: обзор литературы и собственный опыт // Клинический вестник ФМБЦ им. А.И. Бурназяна 2024. №2. С. 31–43. DOI: 10.33266/2782-6430-2024-2-31-43

 

СПИСОК ИСТОЧНИКОВ

  1. Mackenzie J.S., Smith D.W. COVID-19—a novel zoonotic disease: a review of the disease, the virus, and public health measures. Asia Pac J Public Health. 2020; 32 (4): 145–153. DOI: 10.1177/1010539520931326.
  2. Kahathuduwa C., Dhanasekara C., Chin S.H. Case fatality rate in COVID-19: a systematic review and meta-analysis. J. Prev. Med. J. Pr. 2021; 30; 62 (2): 311–20. DOI: 10.15167/2421-4248/jpmh2021.62.2.1627.
  3. World Health Organization. WHO Corona Virus (COVID-19) Dash Board. URL: https://covid19.who.int (accessed on 17 June 2022).
  4. Abate S.M., Ahmed Ali S., Mantfardo B., Basu B. Rate of intensive care unit admission and outcomes among patients with coronavirus: a systematic review and meta-analysis. PLoS One. 2020; 15: e0235653. DOI: 10.1371/journal.pone.0235653.
  5. Chowell G., Blumberg S., Simonsen L., Miller M.A., Viboud C. Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission. Epidemics. 2014; 9:40–51.
  6. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019; 17: 181–192.
  7. To K.K., Hung I.F., Chan J.F., Yuen K.Y. From SARS coronavirus to novel animal and human coronaviruses. J. Thorac. Dis. 2013; 3: S103–S108. doi: 10.3978/j.issn.2072-1439.
  8. Elena S.F., Sanjuán R. Adaptive value of high mutation rates of RNA viruses: Separating causes from consequences. J. Virol. 2005;79:11555–11558.
  9. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl. J. Med. 2020;382: 1199–1207.
  10. Chen N., Zhou M., Dong X., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507–513.
  11. Cai J., Sun W., Huang J. et al. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis 2020; 26 (6): 1343–5. DOI: 10.3201/eid2606.200412.
  12. Santarpia J.L., Rivera D.N., Herrera V., Morwitzer M.J., Creager H., Santarpia G.W., Crown K., Brett-Major D., Schnaubelt E., Broadhurst M.J., et al. Transmission potential of SARS-CoV-2 in viral shedding observed at the University of Nebraska Medical Center. MedrXiv. 2020.
  13. Chen L., Lou J., Bai Y., Wang M. COVID-19 disease with positive fecal and negative pharyngeal and sputum viral tests. Am. J. Gastroenterol. 2020; 115.
  14. Corman V.M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D., Bleicker T., Brunink S., Schneider J., Schmidt M., et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurvelliance. 2020; 25.
  15. Сhan J.F.W., Yuan S., Kok K.H., To K.K.W., Chu H., Yang J., Xing F., Liu J., Yip C., Poon R., et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020.
  16. Временные методические рекомендации профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). МЗ РФ. Версия 17. [Temporary guidelines for prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Ministry of Health of the Russian Federation. Version 17 (In Russ.)]. (accessed 14.12.2022).
  17. Fang Y., Zhang H., Xie J., Lin M., Ying L., Pang P., Ji W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020.
  18. Wang L., Wong A. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images. 2020. (accessed 17.05.2020).
  19. Li L., Qin L., Xu Z., Yin Y., Wang X., Kong B., Bai J., Lu Y., Fang Z., Song Q., et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. 2020.
  20. Chen N.S., Zhou M., Dong X., Qu J.M., Gong F.Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 (10223): 507–513.
  21. Huang C.L., Wang Y.M., Li X.W., Ren L.L., Zhao J.P., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497–506.
  22. Lippi G., Plebani M. Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin. Chim. Acta 2020; 506: 145–148.
  23. Zulfiqar A.A., Lorenzo-Villalba N., Hassler P., Andrès E., Immune thrombocytopenic purpura in a patient with COVID-19. N. Engl. J. Med. 2020; 382: e43.
  24. Price L.C., McCabe C., Garfield B, Wort S.J., Thrombosis and COVID-19 pneumonia: the clot thickens! Eur. Respir. J. 2020; 56: 2001608.
  25. Barrett C.D., Moore H.B., Yaffe M.B., Moore E.E. ISTH interim guidance on recognition and management of coagulopathy in COVID-19: a comment. J. Thromb. Haemost. 2020.
  26. URL: https://urlid.ru/c30s (accessed 16.04.2020) (In Russ.).
  27. Dai M., et al. Patients with cancer appear more vulnerable to SARS-CoV-2: a multicenter study during the COVID-19 outbreak. Cancer Discov. 2020; 10: 783–791.
  28. Klok F.A., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. 2020.
  29. Helms J., et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020; 46: 1089–1098.
  30. Middeldorp S., et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020;. 18: 1995–2002.
  31. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020; 38 (1): 1–9.
  32. Caricchio R., et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021; 80 (1): 88–95.
  33. Webb B.J., et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: a cohort study. Lancet Rheumatol. 2020; 2 (12): e754–e763.
  34. Ragab D., et al. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020; 11: 1446.
  35. Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN J. 2020.
  36. Tavakolpour S., et al. Lymphopenia during the COVID-19 infection: what it shows and what can be learned. Immunol. Lett. 2020; 225: 31.
  37. McGonagle D., et al. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 2020; 19 (6): 102537.
  38. Huang C., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506.
  39. Barton L.M., et al. Covid-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020; 153 (6): 725–733.
  40. Liu L., et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI. Insight. 2019.
  41. Adhikari S.P., et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect. Dis. Poverty. 2020; 9 (1): 1–12.
  42. Zhou P., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270–273.
  43. Hirano T., Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity. 2020; 52 (5):731–733.
  44. Liu Y., et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl. Sci. Rev. 2020; 7 (6): 1003–1011.
  45. Kimura A., Kishimoto T.J. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol. 2010; 40 (7): 1830–1835.
  46. Coomes E.A., Haghbayan H. Interleukin-6 in COVID-19: a systematic review and meta-analysis. Rev. Med. Virol. 2020; 30 (6): 1–9.
  47. Rose-John S. Coordination of interleukin-6 biology by membrane bound and soluble receptors. In: Mackiewicz A., Kurpisz M., Żeromski J., editors. Progress in basic and clinical immunology. Berlin: Springer; 2001. pp. 145–151.
  48. Wolf J., Rose-John S., Garbers C.J.C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014; 70 (1): 11–20.
  49. Lacroix M., et al. Novel insights into interleukin 6 (IL-6) cis-and trans-signaling pathways by differentially manipulating the assembly of the IL-6 signaling complex. J. Biol. Chem. 2015; 290 (45): 26943–26953.
  50. Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018; 15 (4): 234. doi: 10.1038/nrclinonc.2018.8.
  51. Neurath M.F. , Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 2011; 22 (2): 83–89.
  52. Regalado-Artamendi I., Jimenez-Ubieto A., Hern andez-Rivas J.A., et al. Risk factors and mortality of COVID-19 in patients with lymphoma: A multicen ter study. HemaSphere. 2021; 5 (3): e538. DOI: 10.1097/HS9.0000000000000538.
  53. Y.J., Ouyang W., Chua M.L.K., Xie C. SARS CoV-2 transmission in patients with cancer at a tertiary care hospital in Wuhan, China. JAMA Oncol. doi: 10.1001/jamaoncol. 2020.
  54. COVID-19 Lessons from Wuhan – Hematology.org URL: https://www.hematology.org/covid-19/covid-19-lessons-from-wuhan. (accessed 16.06.2020).
  55. He W., Chen L. Chen L., et al. COVID-19 in persons with haematological cancers. Leukemia. 2020; 34 (6): 1637–45. 20.
  56. Martín-Moro F., Marquet J., Piris M., et al. Survival study of hospitalised patients with concurrent COVID-19 and haematological malignancies. Br. J. Haematol. 2020 Jul; 190(1): e16–e20. DOI: 10.1111/bjh.16801.
  57. Maria Condo, mAlberto Mussetti et al.The direct and indirect effects of COVID-19 pandemic in a real-life hematological setting. Cancer Reports. 2021; 4: e1358.
  58. Marchesi F., Salmanton-García J., Emarah Z. et al. COVID-19 in adult acute myeloid leukemia patients: a long-term follow-up study from the European Hematology Association survey (EPICOVIDEHA). Haematologica 2023; 108 (1): 22–33. DOI: 10.3324/haematol.2022.280847.
  59. Tomás Palanques-Pastor, Juan Eduardo Megías-Vericat et al. Characteristics, clinical outcomes, and risk factors of SARS-COV-2 infection in adult acute myeloid leukemia patients: experience of the PETHEMA group.Leukemia & Lymphoma. 2021.
  60. Livio Pagano, Джон Салмантон-Гарсия et al. Journal of Hematology & Oncology 2021; 14: 168.
  61. Aydillo T., Gonzalez-Reiche A.S., Aslam S., van de Guchte A., Khan Z., Obla A., et al. Shedding of Viable SARS-CoV-2 after Immunosuppressive Therapy for Cancer. N. Engl. J. Med. 2020; 383: 2586–8.
  62. Singanayagam A., Patel M., Charlett A., Lopez Bernal J., Saliba V., Ellis J., et al. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, Euro Surveill. 2020.
  63. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., et al. Remdesivir for the treatment of Covid-19—final report. N. Engl. J. Med. 2020; 383: 1813–26.
  64. Gottlieb R.L., Vaca C.E., Paredes R., Mera J., Webb B.J., Perez G., et al. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N. Engl. J. Med. 2022; 386: 305–15.
  65. Lai C-C., Chen C-H., Wang C-Y., Chen K-H., Wang Y-H., Hsueh P-R. Clinical efficacy and safety of remdesivir in patients with COVID-19: a systematic review and network meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2021; 76: 1962–8.
  66. Jayk Bernal A., Gomes da Silva M.M., Musungaie D.B., Kovalchuk E., Gonzalez A., Delos Reyes V., et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N. Engl. J. Med. 2021.
  67. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral Nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N. Engl. J. Med. 2022.
  68. Agarwal A., Rochwerg B., Lamontagne F., Siemieniuk R.A., Agoritsas T., Askie L., et al. A living WHO guideline on drugs for covid-19. B.M.J. 2020; 370: m3379.
  69. Weinreich D.M., Sivapalasingam S., Norton T., Ali S., Gao H., Bhore R., et al. REGEN-COV antibody combination and outcomes in outpatients with Covid-19. N. Engl. J. Med. 2021; 385: e81
  70. Joyner M.J. Carter R.E., Senefeld J.W., Klassen S.A., Mills J.R., Johnson P.W., et al. Convalescent plasma antibody levels and the risk of death from Covid-19. N. Engl. J. Med. 2021; 384: 1015–27.
  71. Devos T., Van Thillo Q., Compernolle V., Najdovski T., Romano M., Dauby N., et al. Early high antibody titre convalescent plasma for hospitalised COVID-19 patients: DAWn-plasma. Eur. Respir. J. 2022 10; 59: 2101724. 10.1183/13993003.01724-2021.
  72. Baang J.H., Smith C., Mirabelli C., et al. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient. J. Infect. Dis. 2021; 223 (1): 23-27.
  73. RECOVERY Collaborative Group. Horby P., Lim W.S, Emberson J.R., Mafham M., Bell J.L., et al. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 2021; 384: 693–704.
  74. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Sterne J.A.C., Murthy S., Diaz J.V., Slutsky A.S., Villar J., et al. Association between administration of systemic corticosteroids and mortality among critically Ill patients with COVID-19: JAMA. 2020; 324: 1330–41.
  75. Munch M.W., Myatra S.N., Vijayaraghavan B.K.T., Saseedharan S., Benfield T., Wahlin R.R., et al. Effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia: the COVID STEROID 2 randomized trial. JAMA. 2021; 326: 1807–17.
  76. Jones S.A., et al. IL-6 transsignaling: the in vivo consequences. J. Interferon. Cytokine Res. 2005; 25 (5): 241–253.
  77. Price C.C., et al. Tocilizumab treatment for cytokine release syndrome in hospitalized patients with coronavirus disease 2019: survival and clinical outcomes. Chest. 2020; 158 (4): 1397–1408.
  78. Xu X., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. 2020; 117 (20): 10970–10975.
  79. Benucci M., et al. COVID-19 pneumonia treated with Sarilumab: a clinical series of eight patients. J. Med. Virol. 2020; 92 (11): 2368–2370.
  80. Khiali S., Rezagholizadeh A., Entezari-Maleki T. A comprehensive review on sarilumab in COVID-19. Expert. Opin. Biol. Ther. 2020; 21: 615–626.
  81. Kalil A.C., Patterson T.F., Mehta A.K., Tomashek K.M., Wolfe C.R., Ghazaryan V., et al. Baricitinib plus Remdesivir for hospitalized adults with Covid-19. N. Engl. J. Med. 2021; 384: 795–807.
  82. Guimarães P.O., Quirk D., Furtado R.H., Maia L.N., Saraiva J.F., Antunes M.O., et al. Tofacitinib in patients hospitalized with Covid-19 pneumonia. N. Engl. J. Med. 2021; 385: 406–15.
  83. COVID-19 vaccine tracker and landscape. Accessed June 14, 2021.
  84. Tracking SARS-CoV-2 variants. Accessed September 30, 2021.
  85. Mitchell E., Spencer Chapman M., Williams N., Dawson K.J., Mende N., Calderbank E.F., et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022; 606 (7913): 343–350.
  86. Shallis R.M., Wang R., Davidoff A., Ma X., Zeidan A.M. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019; 36: 70–87.
  87. Паровичникова Е.Н. и др. Клинический протокол ОМЛ-01.10 по лечению острых миелоидных лейкозов взрослых // Программное лечение заболеваний крови / Под ред. Савченко В.Г. М.: Практика, 2012. С. 153–207. [Parovichnikova E.N., et al. Clinical protocol AML-01.10 for the treatment of acute myeloid leukemia in adults. Programmnoye lecheniye zabolevaniy krovi = Program treatment of blood diseases. Ed. Savchenko V.G. Moscow, Praktika Publ., 2012. P. 153–207 (In Russ.)].
  88. Kantarjian H., Kadia T., DiNardo C., Daver N., Borthakur G., Jabbour E., et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021; 11 (2): 41.
  89. Koreth J., Schlenk R., Kopecky K.J., Honda S., Sierra J., Djulbegovic B.J., et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009; 301 (22): 2349–2361.
  90. Meyers .J, Yu Y., Kaye J.A., Davis K.L. Medicare fee-for-service enrollees with primary acute myeloid leukemia: an analysis of treatment patterns, survival, and healthcare resource utilization and costs. Appl. Health Econ. Health Policy 2013; 11: 275–286.
  91. Шимановская Л. Т., Мисюрина Е. Н., Барях Е. А. и др. Опыт лечения коронавирусной инфекции, ассоциированной с SARS-CoV-2, у пациентов с острым миелоидным лейкозом старшей возрастной группы // Онкогематология. 2023. Т.18, № 4. C. 53–63. [Shimanovskaya L. T., Misyurina E. N., Baryah E. A. Treatment experience of coronavirus infection associated with SARS-CoV-2 in patients with acute myeloid leukemia in the older age group. Onkogematologiya = Oncohematology. 2023;18;4:53–63. (In Russ.)]. DOI: https://doi.org/10.17650/1818‑8346‑2023-18‑4(Suppl)-53‑63.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Финансирование. Исследование не имело спонсорской поддержки. 
Участие авторов. Cтатья подготовлена с равным участием авторов.
Поступила: 23.03.2024. Принята к публикации: 16.04.2024. 

Прокрутить наверх