A.I. BURNASYAN FMBC CLINICAL BULLETIN

ISSN 2782-6430 (print)

State Research Center −Burnasyan Federal Medical Biophysical
Center of Federal Medical Biological Agency

The journal is published in Russian.
Format – A4.
The periodicity of the journal is 4 times a year.

Issue №2 2025 год

A.I. Burnasyan  FMBC clinical bulletin. 2024 № 4

A.S. Samoylov1, N.V. Rylova1,2, A.V. Zholinskiy2, V.U. Lizunov1

Gut Microbiota and Athletes’ Health

1International Office, State Research Center – Burnasyan Federal Medical Biophysical Center  of Federal Medical Biological Agency, Moscow, Russiа

2Federal scientific and clinical center for sports medicine and rehabilitation of the FMBA of Russia, Moscow

Contact person: Rylova Natal’ya Victorovna: rilovanv@mail.ru 

Abstract
Purpose:  A synthesis of world literature on actual knowledge of intestine microbiota influence on athletes’ health.
Methods and materials: National and foreign literature on actual knowledge of intestine microbiota influence on athletes’ health was analyzed. MEDLINE, Embase, Scopus, Web of Science, eLIBRARY, PubMed data Google Academy data bases were used for searching the literature for the period from 2012 to 2024. The following key words and their combinations were applied for search: “athletes”, “gut microbiota “, “butyrate”.
Results: A microbiota is a key factor of human organism homeostasis maintenance. It provides next functions: energy metabolism, maturation and maintenance of immune system, synthesis of vitamins, regulation of bile acids reabsorption in intestine and lots of other functions. Furthermore, bacteria produce some human hormones analogues: serotonin, histamine, dopamine, norepinephrine, testosterone.
According to the recent information, intestine microbiota modification could provide a beneficial influence on human organism that cause a sport results improvement. Modulation of immune response, oxidative stress, metabolic processes and nutrients bioavailability is a general mechanism of microbiota influence on training adaptation. Microbiome affects the muscular protein synthesis, biogenesis and function of mitochondria and the muscular glycogen accumulation.
Conclusion: Currently there is a necessity of further investigations of “microbiome-muscles” relationship.

Keywords: athletes, intestinal microbiota, butyrate

For citation: Samoylov AS, Rylova NV, Zholinskiy AV, Lizunov VU. Gut Microbiota and Athletes’ Health s A.I. Burnasyan Federal Medical Biophysical Center Clinical Bulletin. 2024.4:05-12. (In Russian) DOI: 10.33266/2782-6430-2024-4-05-12

 

REFERENCES

  1. Зиганшина А.А., Рылова Н.В. Баланс микробиоты кишечника ребенка – ключ к сохранению здоровья // Педиатрия. 2019. Т. 98. №6. С. 134–139. [Ziganshina A.A., Rylova N.V. Balancing a Child’s Gut Microbiota is Key to Maintaining Health. Pediatriya = Pediatrics. 2019;98;6:134-139 (In Russ.)].
  2. Рылова Н.В., Жолинский А.В. Становление микробиоты кишечника и когнитивное развитие // Практическая медицина. 2020. Т.18. №3. С. 21-25 [Rylova N.V., Zholinskyy A.V. Formation of Intestinal Microbiotaand Cognitive Development. Prakticheskaya Meditsina = Practical Medicine. 2020;18;3:21-25 (In Russ.)]. DOI: 10.32000/2072-1757-2020-3-21-25
  3. Рылова Н.В., Жолинский А.В., Самойлов А.С. Роль микробиоты кишечника в поддержании гомеостаза организма // Современные проблемы науки и образования. 2019. №6. С.204. [Rylova N.V., Zholinskyy A.V., Samoylov A.S. The Role of Intestinal Microbiotain Maintaining Body Homeostasis. Sovremennyye Problemy Nauki i Obrazovaniya = Modern Problems of Science and Deducation. 2019;6:204 (In Russ.)].
  4. Харитонова Л.А., Григорьев К.И., Борзакова С.Н. Микробиота человека: как новая научная парадигма меняет медицинскую практику // Экспериментальная и клиническая гастроэнтерология. 2019. №1. С. 55–63 [Kharitonova L.A., Grigoriev K.I., Borzakova S.N. Human Microbiota: How a New Scientific Paradigm is Changing Medical Practice. Eksperimental’naya i Klinicheskaya Gastroenterologiya = Experimental and Clinical Gastroenterology. 2019;1:55–63 (In Russ.)]. DOI: 10.31146/1682-8658-ecg-161-1- 55-63.
  5. Sekelja M., Berget I., Næs T., Rudi K. Unveiling an Abundant Core Microbiotain the Human Adult Colon by a Phylogroup-Independent Searching Approach. The ISME Journal. 2010;5:519-31. DOI: 10.1038/ismej.2010.129.
  6. Yatsunenko T., Rey F.E., Manary M.J. Human Gut Microbiome Viewed Across Age and Geography. Nature. 2012;486;9:222–227. DOI: 10.1038/nature11053.
  7. Haiser H.J., Turnbaugh P.J. Developing a Metagenomic View of Xenobiotic Metabolism. Pharmacological Research. 2013;69;1:21-31. DOI: 10.1016/j.phrs.2012.07.009.
  8. Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции. 2013.Т.17. №4/2. С.972–984 [Ravin N.V., Shestakov S.V. Prokaryotic Genome. Vavilovskiy Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Selection. 2013;17;4/2:972–984 (In Russ.)].
  9. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of Metagenomics in the Human Gut Microbiome. World J. Gastroenterol. 2015;21;3:803–814.
  10. Xiong W, Abraham PE, Li Z, Pan C, Hettich RL. Microbial Metaproteomics for Characterizing the Range of Metabolic Functions and Activities of Human Gut Microbiota. Proteomics. 2015;15;20:3424–3438. doi: 10.1002/pmic.201400571.
  11. Белобородова Н.В. Интеграция метаболизма человека и его микробиома при критических состояниях // Общая реаниматология. 2012. Т. 8. №4. P. 42–54 [Beloborodova N.V. Integration of Human Metabolism and its Microbiome in Critical Illness. Obshchaya Reanimatologiya = General Resuscitation. 2012;8;4:42–54 (In Russ.)].
  12. Tremaroli V, Bäckhed F. Functional Interactions Between the Gut Microbiota and Host Metabolism. Nature. 2012:489:7415:242–249. doi: 10.1038/nature11552.
  13. Kennedy P.J, Cryan J.F, Dinan T.G, Clarke G. Irritable Bowel Syndrome: a Microbiome-Gut-Brain Axis Disorder. World J. Gastroenterol. 2014;20;39:14105–14125.
  14. Schroeder BO, Backhed F. Signals from the Gut Microbiota to Distant Organs in Physiology and Disease. Nat. Med. 2016;22;10:1079–1089. doi: 10.1038/nm.4185.
  15. Clarke G., Stilling R.M., Kennedy P.J., Stanton C., Cryan J.F., Dinan T.G. Minireview: Gut Microbiota: the Neglected Endocrine Organ. Mol. Endocrinol. 2014;28:1221–1238.
  16. Clark A., Mach N. Exercise-Induced Stress Behavior, Gutmicrobiota-Brain Axis and Diet: a Systematic Review for Athletes. J. Int. Soc. Sports Nutr. 2016;13:43.
  17. Schoenfeld B.J. Does Exercise-Induced Muscle Damage Play a Role in Skeletal Muscle Hypertrophy. J. Strength Cond. Res. 2012;26:1441–1453.
  18. Martarelli D., Verdenelli M.C., Scuri S., Cocchioni M., Silvi S., Cecchini C. Effect of a Probiotic Intake on Oxidant and Antioxidant Parameters in Plasma of Athletes during Intense Exercise Training. Curr. Microbiol. 2011;62:1689–1696.
  19. Xu Y., Zhong F., Zheng X., Lai H-Y., Wu C. and Huang C. Disparity of Gut Microbiota Composition Among Elite Athletes and Young Adults with Different Physical Activity Independent of Dietary Status: a Matching Study. Front. Nutr. 2022;9:843076. doi: 10.3389/fnut.2022.843076.
  20. Scheiman J., Luber J.M., Chavkin T.A., MacDonald T., Tung A., Pham L.-D., Wibowo M.C., Wurth R.C., Punthambaker S., Tierney B.T., et al. Meta-Omics Analysis of Elite Athletes Identifies a Performance-Enhancing Microbe that Functions Via Lactate Metabolism. Nat. Med. 2019;25:1104–1109.
  21. Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., Hayes P., O’Reilly M., Jeffery I.B., Wood-Martin R., et al. Exercise and Associated Dietary Extremes Impact on Gut Microbial Diversity. Gut. 2014;63:1913–1920.
  22. Petersen L.M., Bautista E.J., Nguyen H., Hanson B.M., Chen L., Lek S.H., Sodergren E., Weinstock G.M. Community Characteristics of the Gut Microbiomes of Competitive Cyclists. Microbiome. 2017;5:98.
  23. Charreire, H., Kesse-Guyot E., Bertrais S., Simon C., Chaix B., Weber C., Touvier M., Galan P., Hercberg S., Oppert J.-M.J.B.J.o.N. Associations Between Dietary Patterns, Physical Activity (Leisure-Time and Occupational) and Television Viewing in Middle-Aged French Adults. Brit. J. Nutr. 2011;105:902–910.
  24. Sheflin A.M., Melby C.L., Carbonero F., Weir T.L. Linking Dietary Patterns with gut Microbial Composition and Function. Gut Microbes. 2017;8:113–129.
  25. Munukka E., Ahtiainen J.P., Puigbo P., Jalkanen S., Pahkala K., Keskitalo A., Kujala U.M., Pietila S., Hollmen M., Elo L., et al. Six-Week Endurance Exercise Alters Gut Metagenome that Is not Reflected in Systemic Metabolism in Over-weight Women. Front. Microbiol. 2018;9:2323.
  26. Sheflin A.M., Melby C.L., Carbonero F., Weir T.L. Linking Dietary Patterns with Gut Microbial Composition and Function. Gut Microbes. 2017;8:113–129.
  27. Clarke S.F., Murphy E.F., O’Sullivan O., Lucey A.J., Humphreys M., Hogan A., Hayes P., O’Reilly M., Jeffery I.B., Wood-Martin R., et al. Exercise and Associated Dietary Extremes Impact on Gut Microbial Diversity. Gut. 2014;63:1913–1920.
  28. Petersen L.M., Bautista E.J., Nguyen H., Hanson B.M., Chen L., Lek S.H., Sodergren E., Weinstock G.M. Community Characteristics of the Gut Microbiomes of Competitive Cyclists. Microbiome. 2017;5:98.
  29. Bressa C., Bailén-Andrino M., Pérez-Santiago J., González-Soltero R., Pérez M., Montalvo-Lominchar M.G., Maté-Muñoz J.L., Domínguez R., Moreno D., Larrosa M. Differences in Gut Microbiota Profile between Women with Active Lifestyle and Sedentary Women. PLoS ONE. 2017;12:e0171352.
  30. Jang L.G., Choi G., Kim S.W., Kim B.Y., Lee S., Park H. The Combination of Sport and Sport-Specific Diet is Associated with Characteristics of Gut Microbiota. An Observational Study. J. Int. Soc. Sports Nutr. 2019;16:21.
  31. Russell W.R., Gratz S.W., Duncan S.H., Holtrop G., Ince J., Scobbie L., Duncan G., Johnstone A.M., Lobley G.E., Wallace R.J., et al. High-Protein, Reduced-Carbohydrate Weight-Loss Diets Promote Metabolite Profiles Likely to be Detrimental to Colonic Health. Am. J. Clin. Nutr. 2011;93:1062–1072.
  32. Nay K., Jollet M., Goustard B., Baati N., Vernus B., Pontones M., Lefeuvre-Orfila L., Bendavid C., Rué O., Mariadassou M. Gut Bacteria are Critical for Optimal Muscle Function: A Potential Link with Glucose Homeostasis. Am. J. Physiol. Endocrinol. Metab. 2019;317:E158–E171.
  33. Okamoto T., Morino K., Ugi S., Nakagawa F., Lemecha M., Ida S., Ohashi N., Sato D., Fujita Y., Maegawa H. Microbiome Potentiates Endurance Exercise through intestinal Acetate Production. Am. J. Physiol. Endocrinol. Metab. 2019;316:E956–E966.
  34. Maughan R.J., Burke L.M., Dvorak J., Larson-Meyer D.E., Peeling P., Phillips S.M., Rawson E.S., Walsh N.P., Garthe I., Geyer H. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018;28:104–125.
  35. Sánchez B., Delgado S., Blanco-Míguez A., Lourenço A., Gueimonde M., Margolles A. Probiotics, Gut Microbiota, and their Influence on Host Health and Disease. Mol. Nutr. Food Res. 2017;61:1600240.
  36. Korpela K., Salonen A., Vepsäläinen O., Suomalainen M., Kolmeder C., Varjosalo M., Miettinen S., Kukkonen K., Savilahti E., Kuitunen M. Probiotic Supplementation Restores Normal Microbiota Composition and Function in Antibiotic-Treated and in Caesarean-Born Infants. Microbiome 2018;6:1–11.
  37. Hibberd A., Yde C., Ziegler M., Honoré A.H., Saarinen M.T., Lahtinen S., Stah B., Jensen H., Stenman L. Probiotic or Synbiotic Alters the Gut Microbiota and Metabolism in a Randomised Controlled Trial of Weight Management in Overweight Adults. Benef. Microbes. 2019;10:121-135.
  38. Marttinen M., Ala-Jaakkola R., Laitila A., Lehtinen M.J. Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients. 2020;Sep 25;12;10:2936. doi: 10.3390/nu12102936. PMID: 32992765; PMCID: PMC7599951

Conflict of interest. The authors declare no conflict of interest. 
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 13.05.2024. Accepted for publication: 11.06.2024

Scroll to Top