A.I. Burnasyan FMBC clinical bulletin. 2025 № 3
A.N. Danko, A.A. Slusar, A.A. Zhimirkina
Metabolic Syndrome in Hot Climates: Levels of Homeostatic Disorders
Pirogov Russian National Research Medical University, Moscow, Russiа
Contact person: Danko Aleksandra Nikolaevna: aleksa.danko2004@gmail.com
Abstract
Metabolic syndrome (MS) is a polyethological systemic metabolic disorder, which in the classification of the World Health Organization (WHO) is designated as a “pandemic of abundance” (“disease of civilization”), due to the key role in its pathogenesis of a complex of interrelated factors: obesity (mainly abdominal type), dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance. According to WHO and leading medical associations, the prevalence of MS has become a global non-communicable epidemic, demonstrating a steady upward trend, especially in populations of industrialized and post-industrial countries and among the younger generation. The purpose of this article is to analyze, highlight, and systematize current data on the effects of chronic heat stress on key pathogenetic mechanisms of MS development, in particular, oxidative stress, the nature of changes in protein and lipid metabolism, and endothelial dysfunction. It has been shown that hypoxic conditions and oxidative stress are more likely to develop in hot climates, which is especially dangerous for patients with metabolic pathology. In addition, unfavorable climatic conditions contribute to changes in eating behavior, which worsens the condition of patients.
Keywords: metabolic syndrome, obesity, insulin resistance, hot climate, heat stress, oxidative stress, hyperglycemia
For citation: Danko AN, Slusar AA, Zhimirkina AA. Metabolic Syndrome in Hot Climates: Levels of Homeostatic Disorders. A.I. Burnasyan Federal Medical Biophysical Center Clinical Bulletin. 2025.3:39-43. (In Russian) DOI: 10.33266/2782-6430-2025-3-39-43
REFERENCES
- International Diabetes Federation (IDF) Worldwide Definition of the Metabolic Syndrome. 2006.
- Jenkins TA. Metabolic Syndrome and Vascular-Associated Cognitive Impairment: a Focus on Preclinical Investigations. Curr Diab Rep. 2022 Aug;22;8:333-340. doi: 10.1007/s11892-022-01475-y. Epub 2022 Jun 23. PMID: 35737273; PMCID: PMC9314301.
- Васенина Е.Е., Ганькина О.А. Метаболический синдром и когнитивные расстройства // Русский медицинский журнал. 2024. №5. С. 12-18 [Vasenina E.E., Gankina O.A. Metabolic Syndrome and Cognitive Disorders. Russkiy Meditsinskiy Zhurnal = Russian Medical Journal. 2024;5:12-18 (In Russ.)].
- Праскурничий Е.А., Морозова О.И. Анализ клинико-патогенетических взаимоотношений динамики изменения массы тела и фибрилляции предсердий у пациентов с первичным ожирением // Архивъ внутренней медицины. 2021. Т. 11. №5(61). С. 389-400 [Praskurnichy E.A., Morozova O.I. Clinical and Pathogenetic Assessment of Relationships between the Dynamics of Body Weight Changes and Atrial Fibrillation in Patients with Primary Obesity. Arkhiv Vnutrenney Meditsiny = The Russian Archives of Internal Medicine. 2021;11;5;61:389-400 (In Russ.)]. doi: 10.20514/2226-6704-2021-11-5-389-400.
- Шарипов Р.А. Артериальная гипертензия и сахарный диабет // Российский кардиологический журнал. 2008. №3. С. 71–75 [Sharipov R.A. Arterial Hypertension And Diabetes Mellitus. Rossiyskiy Kardiologicheskiy Zhurnal = Russian Journal of Cardiology. 2008;3:71-75 (In Russ.)].
- Смирнова М.И., Горбунов В.М., Андреева Г.Ф. и др. Влияние сезонных метеорологических факторов на заболеваемость и смертность населения от сердечно-сосудистых и бронхолегочных заболеваний // Профилактическая медицина. 2012. Т.15. №6. С. 76‑86 [Smirnova M.I., Gorbunov V.M., Andreeva G.F., et al. The Influence of Seasonal Meteorological Factors on Morbidity and Mortality of the Population from Cardiovascular and Bronchopulmonary Diseases. Profilakticheskaya Meditsina = Preventive Medicine. 2012;15;6:76‑86 (In Russ.)].
- Smith NR, Ameen S, Miller SN, Kasper JM, Schwarz JM, Hommel JD, Borzou A. The Neuroanatomical Organization of the Hypothalamus is Driven by Spatial and Topological Efficiency. Front Syst Neurosci. 2024 Aug 5;18:1417346. doi: 10.3389/fnsys.2024.1417346. PMID: 39165582; PMCID: PMC11334159.
- Malenka RC, Nestler EJ, Hyman SE. Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin. Sydor A, Brown RY (eds.). Molecular Neuropharmacology: a Foundation for Clinical Neuroscience. New York: McGraw-Hill Medical, 2009. 179 р. ISBN 9780071481274.
- Luo J., He G., Xu Y., et al. The Relationship between Ambient Temperature and Fasting Plasma Glucose, Temperature-Adjusted Type 2 Diabetes Prevalence and Control Rate: a Series of Cross-Sectional Studies in Guangdong Province, China. BMC Public Health 2021;21:1534. doi: 10.1186/s12889-021-11563-5.
- Suarez L, Barrett-Connor E. Seasonal Variation in Fasting Plasma Glucose Levels in Man. Diabetologia. 1982;22;4:250–3. doi: 10.1007/bf00281300.
- Gikas A, Sotiropoulos A, Pastromas V, Papazafiropoulou A, Apostolou O, Pappas S. Seasonal Variation in Fasting Glucose and Hba1c in Patients with Type 2 Diabetes. Prim Care Diabetes. 2009;3;2:111–4. doi: 10.1016/j.pcd.2009.05.004.
- Marti-Soler H, Gubelmann C, Aeschbacher S, Alves L, Bobak M, Bongard V, et al. Seasonality of Cardiovascular Risk Factors: an Analysis Including over 230 000 Participants in 15 Countries. Heart. 2014;100;19:1517–23. URL: doi: 10.1136/heartjnl-2014-305623.
- Davídkovová H., Plavcová E., Kynčl J., et al. Impacts of Hot and Cold Spells Differ for Acute and Chronic Ischaemic Heart Diseases. BMC Public Health. 2014;14:480. doi: 10.1186/1471-2458-14-480.
- Lee CC, Wu CY, Yang HY. Discoveries of How Cells Sense Oxygen Win the 2019 Nobel Prize in Physiology or Medicine. Biomed J. 2020 Oct;43(5):434-437. doi: 10.1016/j.bj.2020.05.019. Epub 2020 Jun 3. PMID: 33012698; PMCID: PMC7680809.
- Eckardt KU, Kurtz A. Regulation of erythropoietin production. Eur J Clin Invest. 2005 Dec;35 Suppl 3:13-9. doi: 10.1111/j.1365-2362.2005.01525.x. PMID: 16281953.
- Tokutake Y., Takanashi R., Kikusato M., et al. Effect of Dietary 4-Phenylbuthyric acid Supplementation on Acute Heat-Stress-Induced Hyperthermia in Broiler Chickens. Animals (Basel). 2022;12;16:2056.
- Mujahid A., Pumford N.R., Bottje W., et al. Mitochondrial Oxidative Damage in Chicken Skeletal Muscle Induced by Acute Heat Stress. J. Poult. Sci. 2007;44:439-445.
- Маркова Т.Н., Мищенко Н.К., Петина Д.В. Адипоцитокины: современный взгляд на дефиницию, классификацию и роль в организме // Проблемы эндокринологии. 2022. Т.68. №1. С. 73-80 Markova T.N., Mishchenko N.K., Petina D.V. Adipocytokines: Modern Definition, Classification and Physiological Role. Problemy Endokrinologii = Problems of Endocrinology. 2022;68;1:73-80 (In Russ.)]. doi: 10.14341/probl12805.
- Парфенова Н.С., Танянский Д.А. Адипонектин: благоприятное воздействие на метаболические и сердечно-сосудистые нарушения // Артериальная гипертензия. 2013. Т.19. №1. С. 84-96 [Parfenova N.S., Tanyanskiy D.A. Adiponectin: Beneficial Effects on Metabolic and Cardiovascular Dysfunctions. Arterial’naya Gipertenziya = Arterial Hypertension. 2013;19;1:84-96 (In Russ.)]. doi: 10.18705/1607-419X-2013-19-1-84-96.
- Дзугкоев С.Г., Дзугкоева Ф.С., Метельская В.А. Роль оксида азота в формировании эндотелиальной дисфункции при сахарном диабете // Кардиоваскулярная терапия и профилактика. 2010. Т.9. №8. С. 63-68 [Dzugkoev S.G., Dzugkoeva F.S., Metelskaya V.A. Nitric Oxide Role and Endothelial Dysfunction Development in Diabetes Mellitus. Kardiovaskulyarnaya Terapiya i Profilaktika = Cardiovascular Therapy and Prevention. 2010;9;8:63-68 (In Russ.)].
- Yang F., Pei R., Zhang Z., et al. Copper Induces Oxidative Stress and Apoptosis Through Mitochondria-Mediated Pathway in Chicken Hepatocytes. Toxicol. in Vitro. 2019;54:310-316.
- Tan P.P., Zhou B.H., Zhao W.P., et al. Mitochondria-Mediated Pathway Regulates C2C12 Cell Apoptosis Induced by Fluoride. Biol. Trace. Elem. Res. 2018;185;2:440-447.
- Janaszak-Jasiecka A., Płoska A., Wierońska J.M., et al. Endothelial Dysfunction due to eNOS Uncoupling: Molecular Mechanisms as Potential Therapeutic Targets. Cell Mol Biol Lett 2023;28;21. doi: 10.1186/s11658-023-00423-2.
- Binjawhar DN, Alhazmi AT, Bin Jawhar WN, MohammedSaeed W and Safi SZ. Hyperglycemia-Induced Oxidative Stress and Epigenetic Regulation of ET-1 Gene in Endothelial Cells. Front. Genet. 2023;14:1167773. doi: 10.3389/fgene.2023.1167773.
- Mejía-Barajas J.A., Martínez-Mora J.A., Salgado-Garciglia R., et al. Electron Transport Chain in a Thermotolerant Yeast. Bioenerg. Biomembr. 2017;49;2:195-203.
- Müller N., Warwick T., Noack K., et al. Reactive Oxygen Species Differentially Modulate the Metabolic and Transcriptomic Response of Endothelial Cells. Antioxidants (Basel). 2022;11;2:434.
- Kuznetsov A.V., Margreiter R., Ausserlechner M.J., et al. The Complex Interplay between Mitochondria, ROS and Entire Cellular Metabolism. Antioxidants (Basel). 2022;11;10:1995.
- Akbarian, A., Michiels, J., Degroote, J., et al. Association between Heat Stress and Oxidative Stress in Poultry; Mitochondrial Dysfunction and Dietary Interventions with Phytochemicals. J Animal Sci Biotechnol 2016;7;37. doi: 10.1186/s40104-016-0097-5.
- Birben, E., Sahiner, U.M., Sackesen, C., et al. Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613.
- Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Péter M, Porta A, Trapani A, Gombos I, Glatz A, Gungor B, Peksel B, Vigh L Jr, Csoboz B, Horváth I, Vijayan MM, Hooper PL, Harwood JL, Vigh L. Plasma Membranes as Heat Stress Sensors: from Lipid-Controlled Molecular Switches to Therapeutic Applications. Biochim Biophys Acta. 2014 Jun;1838;6:1594-618. doi: 10.1016/j.bbamem.2013.12.015. Epub 2013 Dec 27. PMID: 24374314.
- Gauer R, Meyers BK. Heat-Related Illnesses. Am Fam Physician. 2019;99;8:482.
- Periard JD, DeGroot D, Jay O. Exertional Heat Stroke in Sport and the Military: Epidemiology and Mitigation. Exp Physiol. 2022;107;10:1111–21.
- Gronlund CJ. Racial and Socioeconomic Disparities in Heat-Related Health Effects and their Mechanisms: a Review. Curr Epidemiol Rep. 2014;1;3:165–73.
- Oda J, et al. Endogenous Genetic Risk Factor for Serious Heatstroke: the Thermolabile Phenotype of Carnitine Palmitoyltransferase II Variant. Acute Med Surg. 2019;6;1:25–9.
- Giersch GEW, et al. Body Mass Index, But Not Sex, Influences Exertional Heat Stroke Risk in Young Healthy Men and Women. Am J Physiol Regul Integr Comp Physiol. 2023;324;1:R15–9.
- Lisman P, et al. Heat Tolerance Testing: Association between Heat Intolerance and Anthropometric and Fitness Measurements. Mil Med. 2014;179;11:1339–46.
- Бичкаева Ф.А., Кокоев Т.И., Джиоева Ц.Г., Джабиева З.А., Волкова Н.И., Третьякова Т.В., Власова О.С. Сравнительная характеристика углеводного и жирового обменов у жителей двух различных климатогеографических территорий // Вестник Академии знаний. 2013. №1 (4). С. 174-181 [Bichkaeva F.A., Kokoev T.I., Dzhioeva Ts.G., Dzhabieva Z.A., Volkova N.I., Tret’yakova T.V., et al. Comparative Characteristics of the Carbohydrate and Fat Metabolism in the Residents of Two Different Climatic Regions. Vestnik Akademii Znaniy = Bulletin of the Academy of Knowledge. 2013;1:174-81 (In Russ.)].
- Ежов М.В., Кухарчук В.В., Сергиенко И.В. и др. Нарушения липидного обмена: Клинические рекомендации // Российский кардиологический журнал. 2023. №5 [Ezhov M.V., Kukharchuk V.V., Sergienko I.V. et al. Lipid Metabolism Disorders. Clinical Guidelines 2023 // Rossiyskiy Kardiologicheskiy Zhurnal = Russian Journal of Cardiology.2023;5 (In Russ.)].
- Estevao I.L., Kazman J.B., Bramer L.M., et al. The Human Plasma Lipidome Response to Exertional Heat Tolerance Testing. Lipids Health Dis 2024;23;380. doi: 10.1186/s12944-024-02322-7.
- Starkie RL, et al. Effect of Temperature on Muscle Metabolism during Submaximal Exercise in Humans. Exp Physiol. 1999;84;4:775–84.
- King DS, et al. Muscle Metabolism during Exercise in the Heat in Unacclimatized and Acclimatized Humans. J Appl Physiol. 1985;59;5:1350–4.
- Kirwan JP, et al. Substrate Utilization in Leg Muscle of Men after Heat Acclimation. J Appl Physiol. 1987;63;1:31–5.
- Morino K, Petersen KF, Shulman GI. Molecular Mechanisms of Insulin Resistance in Humans and their Potential Links with Mitochondrial Dysfunction. Diabetes. 2006;55;Suppl 2:S9–15.
- Febbraio MA, et al. Blunting the Rise in Body Temperature Reduces Muscle Glycogenolysis during Exercise in Humans. Exp Physiol. 1996;81;4:685–93.
- Starkie RL, et al. Effect of Temperature on Muscle Metabolism during Submaximal Exercise in Humans. Exp Physiol. 1999;84;4:775–84.
- Rehman K., Akash M.S.H. Mechanisms of Inflammatory Responses and Development of Insulin Resistance: How Are They Interlinked? J Biomed Sci 2016;23;87. doi: 10.1186/s12929-016-0303-y
Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 13.05.2025. Accepted for publication: 9.06.2025