A.I. Burnasyan Scientific journal FMBC

Clinical Bulletin

ISSN 2782-6430 (print)

State Research Center −Burnasyan Federal Medical Biophysical
Center of Federal Medical Biological Agency

The journal is published in Russian.
Format – A4.
The periodicity of the journal is 4 times a year.

Issue №1 2024 год

A.I. Burnasyan  FMBC clinical bulletin. 2022 № 3

E.I. Tolstykh1, P.A. Sharagin1, E.A. Shishkina1,2, A.Yu. Volchkova1, M.O. Degteva1
Anatomical and Morphological Basis for Dosimetric Modeling of Human
Trabecular Bone Using a Stochastic Parametric Approach

1Urals Research Center for Radiation Medicine FMBA of Russia, Chelyabinsk
2Chelyabinsk State University, Chelyabinsk, Russia

Contact person: Tolstykh Evgenia Igorevna: evgenia.tolstykh@yandex.ru

Abstract
Purpose: To create an anatomical and morphological basis for a Stochastic Parametric Skeletal Dosimetric model (SPSDmodel) for a human of different age, which includes an assessment of the parameters of the trabecular bone microstructure in the hematopoietic regions of the human skeleton. The model is necessary to estimate the doses to red bone marrow from osteotropic radionuclides (89,90Sr). The model is being created as a part of the dosimetric support for epidemiological studies of the South Ural cohorts, the members of which lived in territories radioactively contaminated in the 1950s.
Materials and methods: Estimation of model parameters is based on the collection and analysis of published data. The selection of publications was made using Internet search engines: Google, PubMed, Academia, e-library, etc. Original articles in peerreviewed publications were selected, atlases, manuals, monographs and dissertations were considered. Information was collected only on healthy individuals. The collected data reffered to the following parameters of the trabecular bone: trabecular thickness, intertrabecular space, the proportion of bone in the total tissue volume. The parameters were assessed using histomorphometry and micro-CT. To make a decision about bone modeling, the data on a hematopoietic activity in it, obtained by
MRI and PET, were considered.
Result: Based on the results of the analysis of published information, primary data files were generated containing bibliographic data on the source of information, data on the subjects of the study and the measurement results of trabecular bone parameters. On this basis, average population estimates of the parameters were obtained and their variability (standard deviation, coefficients of variation) was estimated. Data on the duration of hematopoiesis in various parts of the skeleton and data on age-related changes in the microstructure were analyzed. The paper presents a description of a full set of parameters of the SPSD model of trabecular bones for newborns, children aged 1, 5 and 10 years, as well as for adolescents aged 15 years and adults. Conclusion: The obtained numerical values are used as input data (parameters) for generating dosimetric phantoms in voxel form. Our results will make it possible in the future to calculate conversion factors that relate the specific activity of radionuclides in the source tissue (bone trabeculae) to the dose rate in the detector tissue (red bone marrow), as well as the uncertainty of their estimates.

Keywords: dosimetry, stochastic modeling, skeleton, red bone marrow, trabecular bone

For citation: Tolstykh E.I, Sharagin PA, Shishkina E.A, Volchkova AYu, Degteva MO. Anatomical and Morphological Basis for Dosimetric Modeling of Human Trabecular Bone Using a Stochastic Parametric Approach. A.I. Burnasyan Federal Medical Biophysical Center Clinical Bulletin. 2022.3:25-40. (In Russian) DOI: 10.33266/2782-6430-2022-3-25-40

 

REFERENCES

1. Gillies M., Haylock R., Hunter N., Zhang W. Risk of Leukemia Associated with Protracted Low-Dose Radiation Exposure: Updated Results from the National Registry for Radiation Workers Study. Radiat Res. 2019;192;5:527-537. DOI: 10.1667/RR15358.1.
2. Preston D.L., Sokolnikov M.E., Krestinina L.Y., Stram D.O. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies. Radiat. Prot. Dosimetry. 2017;173;1-3:26–31. DOI: 10.1093/rpd/ncw316.
3. Krestinina L.Y., Davis F.G., Schonfeld S., Preston D.L., Degteva M., Epifanova S., et al. Leukaemia Incidence in the Techa River Cohort: 1953–2007. Brit. J. Cancer. 2013;109:2886–2893. DOI: 10.1038/bjc.2013.614.
4. Akleyev A.V., Krestinina L.Yu., Degteva M.O., Tolstykh E.I. Consequences of the Radiation Accident at the Mayak Production Association in 1957. J. Radiol. Prot. 2017;37;3:19-42. DOI: 10.1088/1361-6498/aa7f8d.
5. Дёгтева М.О., Шишкина Е.А., Толстых Е.И., и др. Методологический подход к разработке дозиметрических моделей скелета человека для бета-излучающих радионуклидов // Радиационная гигиена. 2019. Т.12, № 2. С. 66-75. DOI: 10.21514/1998-426Х-2019-12-2-66-75. [Degteva M.O., Shishkina Ye.A., Tolstykh Ye.I., et al. Methodological Approach to Development of Dosimetric Models of the Human Skeleton for Beta-Emitting Radionuclides. Radiatsionnaya gigiyena = Radiation Hygiene 2019;12;2:66-75. DOI: 10.21514/1998-426X- 2019-12-2-66-75 (In Russ.)].
6. Degteva M.O., Tolstykh E.I., Shishkina E.A., Sharagin P.A., Zalyapin V.I., Volchkova A.Yu., et al. Stochastic Parametric Skeletal Dosimetry model for Humans: General Description. PLoS ONE. 2021;16;10:e0257605. https://doi.org/10.1371/journal. pone.0257605.
7. Shishkina E.A., Zalyapin V.I., Timofeev Yu.S., Degteva M.O., Smith M., Napier B. Parametric Stochastic Model of Bone Structures to Be Used in Computational Dosimetric Phantoms of Human Skeleton. Radiation&Applications. 2018;3;2:133-137. DOI: 10.21175/RadJ.2018.02.022.
8. Zalyapin V.I., Timofeev Yu.S., Shishkina E.A. A Parametric Stochastic Model of Bone Geometry. Bulletin of Southern Urals State University. Mathematical Modelling. Programming & Computer Software. 2018;11;2:44-57. DOI:10.14529/mmp180204.
9. Hough M., Johnson P., Rajon D., Jokisch D., Lee C., Bolch W. An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Male—Internal Electron Sources. Phys. Med. Biol. 2011;56;8:2309–2346. DOI: 10.1088/0031-9155/56/8/001.
10. O’Reilly S.E., DeWeese L.S, Maynard M.R., Rajon D.A., Wayson M.B., Marshall E.L., et al. An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female-Internal Electron Sources. Phys. Med. Biol. 2016;61;24:8794-8824. DOI: 10.1088/1361-6560/61/24/8794.
11. Eckstein F., Matsuura M., Kuhn V., Priemel M., Müller R., Link T.M., et al.. Sex Differences of Human Trabecular Bone Microstructure in Aging Are Site-Dependent. J. Bone Miner Res. 2007;22:817–824. DOI: 10.1359/JBMR.070301.
12. ICRP Publication 89. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. A Report of Age- and Gender-Related Differences in the Anatomical and Physiological Characteristics of Reference Individuals. Annals of the ICRP. 2002;32;3–4:5–265.
13. Piney A. The Anatomy of the Bone Marrow. Br. Med. J. 1922;2:792–795.
14. Custer R.P. An Atlas of the Blood and Bone Marrow. Philadelphia, W. B. Saunders Company, 1974. 44p.
15. Hartsock R.J., Smith E.B., Petty C.S. Normal Variations with Aging of the Amount of Hematopoietic Tissue in Bone Marrow from the Anterior Iliac Crest. A Study Made from 177 Cases of Sudden Death Examined by Necropsy. Am. J. Clin. Pathol. 1965;43:326–331. DOI: 10.1093/ajcp/43.4.326.
16. Emery J.L., Follett G.F. Regression of Bone-Marrow Haemopoiesis from the Terminal Digits in the Foetus and Infant. Br. J. Haematol. 1964;10;4:485–489. DOI: 10.1111/j.1365-2141.1964.tb00725.x.
17. Cristy M. Active Bone Marrow Distribution as a Function of Age in Humans. Phys. Med. Biol. 1981;26;3:389–400. DOI: 10.1088/0031-9155/26/3/003.
18. Abu-Gheida I., Zaghal A., Naffaa L., Taddei P.J. Measured Distribution of Total Red Bone Marrow in Young Children. Appl. Rad. Oncol. 2021;10;2:30-37.
19. Normal Pediatric Bone X-Ray, Available. URL: https://radiologykey. com/normal-growth-normal-development-andcongenital-disorders/; https://bonexray.com/; http://bones.getthediagnosis. org/; http://bonepit.com/; https://radiopaedia.org/cases/.
20. Parfitt A.M., Drezner M.K., Glorieux F.H., Kanis J.A., Malluche H., Meunier P.J., et al. Bone Histomorphometry: Standardization of Nomenclature, Symbols, and Units. Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research. 1987;2;6:595–610. https://doi.org/10.1002/jbmr.
21. Dempster D.W., Compston J.E., Drezner M.K., Glorieux F.H., Kanis J.A., Malluche H., et al. Standardized Nomenclature, Symbols, and Units for Bone Histomorphometry: a 2012 Update of the Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research. 2013;28;1:2–17. https://doi.org/10.1002/jbmr.1805.
22. Campbell B.A., Callahan J., Bressel M., Simoens N., Everitt S., Hofman M.S., et al. Distribution Atlas of Proliferating Bone Marrow in Non-Small Cell Lung Cancer Patients Measured by FLT-PET/CT Imaging, With Potential Applicability in Radiation Therapy Planning. International Journal of Radiation Oncology, Biology, Physics. 2015;92;5:1035–1043. DOI: 10.1016/j.ijrobp.2015.04.027.
23. Vogler J.B. 3rd, Murphy W.A. Bone Marrow Imaging. Radiology. 1988;168;3:679–693. DOI: 10.1148/radiology.168.3.3043546.
24. Vande Berg B.C., Malghem J., Lecouvet F.E., Maldague B. Magnetic Resonance Imaging of Normal Bone Marrow. Eur. Radiol. 1998;8;8:1327–1334. DOI: 10.1007/s003300050547.
25. Vande Berg B.C., Malghem J., Lecouvet F.E., Maldague B. Magnetic Resonance Imaging of the Normal Bone Marrow. Skeletal. Radiol. 1998;27;9:471-483. DOI: 10.1007/s002560050423.
26. Hayman R., Verriotis M.A., Jovalekic A., Fenton A.A., Jeffery K.J. Anisotropic Encoding of Three-Dimensional Space by Place Cells and Grid Cells. Nat. Neurosci. 2011;14;9:1182–1188. DOI: 10.1038/nn.2892.
27. Moore S.G., Dawson K.L. Red and Yellow Marrow in the Femur: Age-Related Changes in Appearance at MR Imaging. Radiology. 1990;175;1:219–223. DOI: 10.1148/radiology. 175.1.2315484.
28. Niu J., Feng G., Kong X., Wang J., Han P. Age-Related Marrow Conversion and Developing Epiphysis in the Proximal Femur: Evaluation with STIR MR Imaging. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2007;27;5:617–21. DOI: 10.1007/s11596-007-0537-8.
29. Taccone A., Oddone M., Dell’Acqua A.D., Occhi M., Ciccone M.A. MRI “Road-Map” of Normal Age-Related Bone Marrow. II. Thorax, Pelvis and Extremities. Pediatr Radiol. 1995;25;8:596–606. DOI: 10.1007/BF02011826.
30. Waitches G., Zawin J.K., Poznanski A.K. Sequence and Rate of Bone Marrow Conversion in the Femora of Children as Seen on Mr Imaging: Are Accepted Standards Accurate? AJR Am. J. Roentgenol. 1994;162;6:1399–1406. DOI: 10.2214/ajr.162.6.8192007.
31. Ghedini G. Neue Beiträge zur Diagnostik der Krankheiten der hämatopoetischen Organe mittels Probepunktion des Knochenmarks. Wien. klin. Wschr. 1910;23:1840–1847.
32. Zawin J.K., Jaramillo D. Conversion of Bone Marrow in the Humerus, Sternum, and Clavicle: Changes with Age on MR Images. Radiology. 1993;188;1:159–164. DOI: 10.1148/radiology. 188.1.8511291.
33. Yamada M., Matsuzaka T., Uetani M., Hayashi K., Tsuji Y., Nakamura T. Normal Age-Related Conversion of Bone Marrow in the Mandible: Mr Imaging Findings. AJR Am. J. Roentgenol. 1995;165;5:1223–1228. DOI: 10.2214/ajr.165.5.7572508.
34. Simonson T.M., Kao S.C. Normal Childhood Developmental Patterns in Skull Bone Marrow by MR Imaging. Pediatr Radiol. 1992;22;8:556–559. DOI: 10.1007/BF02015347.
35. Taccone A., Oddone M., Occhi M., Dell’Acqua A.D., Ciccone M.A. MRI “Road-Map” of Normal Age-Related Bone Marrow. I. Cranial Bone and Spine. Pediatr Radiol. 1995;25;8:588–595. DOI: 10.1007/BF02011825.
36. Sinha M.B., Rathore M., Sinha H.P. A Study of Variation of Sacral Hiatus in Dry Bone in Central Indian Region. International J. of Healthcare and Biomedical Research. 2014;2;4:46-52.
37. Vasuki A.K., Sundaram K.K., Nirmaladevi M., Jamuna M., Hebzibah D.J., Fenn T.K. Anatomical Variations of Sacrum and Its Clinical Significance. Int. J. Anat. Res. 2016;4;1:1859-63. DOI: http://dx.doi.org/10.16965/ijar.2015.352.
38. Nastoulis E., Karakasi M.V., Pavlidis P., Thomaidis V., Fiska A. Anatomy and Clinical Significance of Sacral Variations: a Systematic Review. Folia Morphol (Warsz). 2019;78;4:651-667. DOI: 10.5603/FM.a2019.0040.
39. Cunningham C., Scheuer L., Black S.. Developmental Juvenile Osteology. London: Elsevier Academic Press. 2016. 622 p.
40. Shagina N.B., Tolstykh E.I., Degteva M.O., Anspaugh L.R., Napier B.A. Age and Gender Specific Biokinetic Model for Strontium in Humans. Journal of Radiological Protection. 2015;35;1:87–127. https://doi.org/10.1088/0952-4746/35/1/87.
41. Stauber M., Müller R. Age-Related Changes in Trabecular Bone Microstructures: Global and Local Morphometry. Osteoporos Int. 2006;17;4:616-626. DOI:10.1007/s00198-005-0025-6.
42. Crane G.J., Fazzalari N.L., Parkinson I.H., Vernon-Roberts B. Age-Related Changes in Femoral Trabecular Bone in Arthrosis. Acta. Orthop. Scand. 1990;61;5:421-426. DOI:10.3109/17453679008993554.
43. Greenwood C., Clement J., Dicken A., et al. Age-Related Changes in Femoral Head Trabecular Microarchitecture. Aging. Dis. 2018;9;6:976-987. DOI:10.14336/AD.2018.0124.
44. Rehman M.T., Hoyland J.A., Denton J., Freemont A.J. Age related Histomorphometric Changes in Bone in Normal British Men and Women. J. Clin. Pathol. 1994;47;6:529–534. DOI: 10.1136/jcp.47.6.529.
45. Parfitt A.M., Mathews C.H., Villanueva A.R., Kleerekoper M., Frame B., Rao D.S. Relationships between Surface, Volume, and Thickness of Iliac Trabecular Bone in Aging and in Osteoporosis. Implications for the Microanatomic and Cellular Mechanisms of Bone Loss. J. Clin. Invest. 1983;72;4:1396–1409. DOI: 10.1172/JCI111096.
46. Wilke H.J., Zanker D., Wolfram U. Internal Morphology of Human Facet Joints: Comparing Cervical and Lumbar Spine with Regard to Age, Gender And the Vertebral Core. J. Anat. 2012;220;3:233-241. DOI:10.1111/j.1469-7580.2011.01465.
47. Cotter M.M., Simpson S.W., Latimer B.M., Hernandez C.J. Trabecular Microarchitecture of Hominoid Thoracic Vertebrae. Anat. Rec. 2009;292;8:1098-1106. DOI:10.1002/ar.20932.
48. Юрьев В.В., Симаходский, Н. Н., Хомич Н.Н., Воронович М.М. Рост и развитие ребенка. СПб.: Изд-во Санкт Петербург. 2007. [Yuryev V.V., Simakhodskiy, N. N., Khomich N.N., Voronovich M.M. Rost i Razvitiye Rebenka = Growth and Development of the Child. St. Petersbur Publ., 2007 (In Russ.)].
49. Salle B.L., Rauch F., Travers R., Bouvier R., Glorieux F.H. Human Fetal Bone Development: Histomorphometric Evaluation of the Proximal Femoral Metaphysis. Bone. 2002;30;6:823–828. DOI: 10.1016/s8756-3282(02)00724-x.
50. Ryan T.M., Krovitz G.E. Trabecular Bone Ontogeny in the Human Proximal Femur. J. Hum. Evol. 2006;51;6:591–602. DOI: 10.1016/j.jhevol.2006.06.004.
51. Ryan T.M., Raichlen D.A., Gosman J.H. Structural and Mechanical Changes in Trabecular Bone During Early Development in the Human Femur and Humerus. Chapter 12. Building Bones: Bone Formation and Development in Anthropology. Cambridge University Press, 2017. P. 281–302. https://doi.org/10.1017/9781316388907.013.
52. Milovanovic P., Djonic D., Hahn M., Amling M., Busse B., Djuric M. Region-Dependent Patterns of Trabecular Bone Growth in the Human Proximal Femur: A Study of 3D Bone Microarchitecture from Early Postnatal to Late Childhood Period. Am. J. Phys. Anthropol. 2017;164;2:281–291. DOI: 10.1002/ajpa.23268.
53. Pafundi D. Image-Based Skeletal Tissues and Electron Dosimetry Models for the ICRP Reference Pediatric Age Series. A Dissertation Presented to the Graduate Schools of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of the Philosophy. University of Florida, 2009.
54. Spencer T., Scholar M. Quantitative Analysis of Cortical and Trabecular Bone in Three Human Populations. McNair Research Journal. 2015;68-81. URL: https://www.semanticscholar.org/paper/Quantitative-Analysis-of-Cortical-and-Trabecular-in-Spencer-Ryan/b9c6f68f93a60030aeda628797702 91bb2088631.
55. Wen X.X., Zong C.L., Xu C., Ma X.Y., Wang F.Q., Feng Y.F., et al. Optimal Sample Volumes of Human Trabecular Bone in μCT Analysis Within Vertebral Body and Femoral Head. Int. J. Clin. Exp. Med. 2015;8;10:17868-17879.
56. Fazzalari N.L., Parkinson I.H. Femoral Trabecular Bone of Osteoarthritic and Normal Subjects in an Age and Sex Matched Group. Osteoarthritis Cartilage. 1998;6;6:377-382. DOI: 10.1053/joca.1998.0141.
57. Doershuk L.J., Saers J.P.P., Shaw C.N., Jashashvili T., Carlson K.J., Stock J.T., et al. Complex Variation of Trabecular Bone Structure in the Proximal Humerus and Femur of Five Modern Human Populations. Am. J. Phys. Anthropol. 2019;168;1:104-118. DOI: 10.1002/ajpa.23725.
58. Djuric M., Djonic D., Milovanovic P., Nikolic S., Marshall R., Marinkovic J., et al. Region-Specific Sex-Dependent Pattern of Age-Related Changes of Proximal Femoral Cancellous Bone and its Implications on Differential Bone Fragility. Calcif Tissue Int. 2010;86;3:192-201. DOI: 10.1007/s00223-009-9325-8.
59. Turunen M.J., Prantner V., Jurvelin J.S., Kröger H., Isaksson H. Composition and Microarchitecture of Human Trabecular Bone Change with Age and Differ between Anatomical Locations. Bone. 2013;54;1:118-125. DOI: 10.1016/j.bone.2013.01.045.
60. Fazzalari N.L., Kuliwaba J.S., Atkins G.J., Forwood M.R., Findlay D.M. The Ratio of Messenger RNA Levels of Receptor Activator of Nuclear Factor KappaB Ligand to Osteoprotegerin Correlates with Bone Remodeling Indices in Normal Human Cancellous Bone But not in Osteoarthritis. J. Bone Miner. Res. 2001;16;6:1015-1027. DOI: 10.1359/jbmr.2001.16.6.1015.
61. Truong L.H., Kuliwaba J.S., Tsangari H., Fazzalari N.L. Differential Gene Expression of Bone Anabolic Factors and Trabecular Bone Architectural Changes in the Proximal Femoral Shaft of Primary Hip Osteoarthritis Patients. Arthritis Res. Ther.
2006;8;6:R188. DOI: 10.1186/ar2101.
62. Tsangari H., Kuliwaba J.S., Fazzalari N.L. Trabecular Bone Modeling and Subcapital Femoral Fracture. J. Musculoskelet Neuronal Interact. 2007;7;1:69-73.
63. Gosman J.H., Stout S.D., Larsen C.S. Skeletal Biology over the Life Span: a View from the Surfaces. Am. J. Phys. Anthropol. 2011;146;Suppl53:86–98. DOI: 10.1002/ajpa.21612.
63. Scherf H., Harvati K., Hublin J.J. A comparison of Proximal Humeral Cancellous Bone of Great Apes and Humans. J. Hum. Evol. 2013;65;1:29–38. DOI: 10.1016/j.jhevol.2013.03.008.
64. Barvencik F., Gebauer M., Beil F.T., Vettorazzi E., Mumme M., Rupprecht M., et al. Age- and Sex-Related Changes of Humeral Head Microarchitecture: Histomorphometric Analysis of 60 Human Specimens. Journal of Orthopaedic Research. 2010;28;1:18–26. DOI: 10.1002/jor.20957.
65. Yakacki C.M., Poukalova M., Guldberg R.E. The Effect of the Trabecular Microstructure on the Pullout Strength of Suture Anchors. J. Biomech. 2010;43;10:1953–1959. DOI: 10.1016/j.jbiomech. 2010.03.013.
66. Gosman J.H., Ketcham R.A. Patterns in Ontogeny of Human Trabecular Bone from SunWatch Village in the Prehistoric Ohio Valley: General Features of Microarchitectural Change. Am. J. Phys. Anthropol. 2009;138;3:318–332. DOI:10.1002/ajpa.20931.
67. Ding M., Lin X., Liu W. Three-Dimensional Morphometric Properties of Rod- And Plate-Like Trabeculae in Adolescent Cancellous Bone. J. Orthop. Translat. 2017;12:26–35. DOI: 10.1016/j.jot.2017.10.001. eCollection 2018 Jan.
68. Saers J.P., Cazorla-Bak Y., Shaw C.N., Stock J.T., Ryan T.M. Trabecular Bone Structural Variation Throughout the Human Lower Limb. J. Hum. Evol. 2016;97:97–108. DOI: 10.1016/j.jhevol.2016.05.012.
69. Acquaah F., Robson Brown K.A., Ahmed F., Jeffery N., Abel R.L. Early Trabecular Development in Human Vertebrae: Overproduction, Constructive Regression, and Refinement. Front Endocrinol (Lausanne). 2015;6:67. DOI: 10.3389/fendo.2015.00067. eCollection 2015.
70. Kneissel M., Roschger P., Steiner W., Schamall D., Kalchhauser G., Boyde A., et al. Cancellous Bone Structure in the Growing and Aging Lumbar Spine in a Historic Nubian Population. Calcif Tissue Int. 1997;61:95–100. DOI: 10.1007/s002239900302.
71. Vijayapalan V., Sutton-Smith P., Parkinson I.H., Martin R.B., Fazzalari N.L. Trabecular Rod Thickness by Direct Measurement from 3D SEM Anaglyphs. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003;271;2:286–290. DOI: 10.1002/ar.a.10035.
72. Lochmüller E.M., Kristin J., Matsuura M., Kuhn V., Hudelmaier M., Link T.M., et al. Measurement of Trabecular Bone Microstructure Does Not Improve Prediction of Mechanical Failure Loads at the Distal Radius Compared with Bone Mass Alone. Calcif Tissue Int. 2008;83:293–299 DOI 10.1007/s00223-008-9172-z.
73. Шепелькевич А.П., Кабак С.Л., Рогов Ю.И., и др. Морфологические изменения костной ткани при сахарном диабете 1-го типа // Военная медицина. 2011. Т.21. № 4. С. 68-73. [Shepelkevich A.P., Kabak S.L., Rogov Yu.I., et al. Morphological Changes in Bone Tissue in Type 1 Diabetes Mellitus. Voyennaya Meditsina. 2011;4;21:68-73 (In Russ.)].
74. Beuf O., Newitt D.C., Mosekilde L., Majumdar S. Trabecular Structure Assessment in Lumbar Vertebrae Specimens Using Quantitative Magnetic Resonance Imaging and Relationship with Mechanical Competence. J. Bone Miner Res. 2001;16;8:1511-1519. DOI: 10.1359/jbmr.2001.16.8.1511.
75. Ostojić Z., Cvijanović O., Bobinac D., Zoricić S., Sosa I., Marić I., et al. Age-Related and Gender-Related Differences between Human Vertebral and Iliac Crest Bone–a Histomorphometric Study on the Population of the Mediterranean Coast of Croatia. Coll. Antropol. 2006;30;1:49-54.
76. Wang Q., Ghasem-Zadeh A., Wang X., Iuliano-Burns S., Seeman E. Trabecular Bone of Growth Plate Origin Influences Both Trabecular and Cortical Morphology in Adulthood. J. Bone Miner. Res. 2011;26:1577–1583. DOI:10.1002/jbmr.360.
77. Mosekilde L. Sex Differences in Age-Related Loss of Vertebral Trabecular Bone Mass and Structure–Biomechanical Consequences. Bone. 1989;10;6:425-432. DOI: 10.1016/8756-3282(89)90074-4.
78. Grote H.J., Amling M., Vogel M., Hahn M., Pösl M., Delling G. Intervertebral Variation in Trabecular Microarchitecture Throughout the Normal Spine in Relation to Age. Bone. 1995;16;3:301–308. DOI: 10.1016/8756-3282(94)00042-5.
79. Cotter M., David A., Scott W., Bruce L., Christopher J., Human Evolution and Osteoporosis-Related Spinal Fractures. PLoS One. 2011;6;10:e26658. DOI: 10.1371/journal.pone.0026658.
80. Cunningham C.A., Black S.M. Anticipating Bipedalism: Trabecular Organization in the Newborn Ilium. J. Anat. 2009;214;6:817–829. DOI: 10.1111/j.1469-7580.2009.01073.
81. Glorieux F.H., Travers R., Taylor A., Bowen J.R., Rauch F., Norman M., et al. Normative Data for Iliac Bone Histomorphometry in Growing Children. Bone. 2000;26;2:103–109. DOI: 10.1016/s8756-3282(99)00257-4.
82. Volpato V. Bone Endostructure Morphogenesis of the Human Ilium. C. R. Palevol. 2008;7:463–471. DOI: 10.1016/j.crpv.2008.06.001.
83. Pereira R.C., Bischoff D.S., Yamaguchi D., Salusky I.B., Wesseling-Perry K. Micro-CT in the Assessment of Pediatric Renal Osteodystrophy by Bone Histomorphometry. Clin J. Am. Soc. Nephrol. 2016;11;3:481–487. DOI: 10.2215/CJN.04810515.
84. Ostertag A., Cohen-Solal M., Audran M., Legrand E., Marty C., Chappard D., et al. Vertebral Fractures Are Associated with Increased Cortical Porosity in Iliac Crest Bone Biopsy of Men With Idiopathic Osteoporosis. Bone. 2009;44;3:413–417. DOI: 10.1016/j.bone.2008.11.004.
85. Shahtaheri S.M. Comparison of Cancellous Bone Histomorphometry Between Young Men and Women. Pakistan Journal of Biological Sciences. 2006;9:1338–1341. DOI: 10.3923/pjbs.2006.1338.1341.
86. Cohen A., Dempster D.W., Müller R., Guo X.E., Nickolas T.L., Liu X.S., et al. Assessment of Trabecular and Cortical Architecture and Mechanical Competence of Bone by High-Resolution Peripheral Computed Tomography: Comparison with Transiliac Bone Biopsy. Osteoporos Int. 2010;21;2:263–273. DOI: 10.1007/s00198-009-0945-7.
87. Ulrich D., van Rietbergen B., Laib A., Rüegsegger P. The Ability of Three-Dimensional Structural Indices to Reflect Mechanical Aspects of Trabecular Bone. Bone. 1999;25;1:55-60. DOI: 10.1016/s8756-3282(99)00098-8.
88. Tamminen I.S., Isaksson H., Aula A.S., Honkanen E., Jurvelin J.S., Kröger H. Reproducibility and Agreement of Micro-CT and Histomorphometry in Human Trabecular Bone with Different Metabolic Status. J. Bone Miner Metab. 2011;29;4:442-448. DOI: 10.1007/s00774-010-0236-6.
89. Qiu S., Rao D.S., Palnitkar S., Parfitt A.M. Independent and Combined Contributions of Cancellous and Cortical Bone Deficits to Vertebral Fracture Risk in Postmenopausal Women. J. Bone Miner Res. 2006;21;11:1791-6. DOI: 10.1359/jbmr.060801.
90. Mohsen S.S. Comparison of Cancellous Bone Histomorphometry between Young Men and Women. Pakistan Journal of Biological Sciences. 2006;9;7:1338-1341.DOI: 10.3923/pjbs.2006.1338.1341.
91. Byers S., Moore A.J., Byard R.W., Fazzalari N.L. Quantitative Histomorphometric Analysis of the Human Growth Plate from Birth to Adolescence. Bone.2000;27;4:495–501. DOI: 10.1016/s8756-3282(00)00357-4.
92. Mailhot G., Dion N., Farlay D., Rizzo S., Bureau N.J., Jomphe V.S., et al. Impaired Rib Bone Mass and Quality in End-Stage Cystic Fibrosis Patients. Bone. 2017;98:9–17. DOI: 10.1016/j.bone.2017.02.007.
93. Hazrati-Marangalou J., Ito K., Taddei F., van Rietbergen B. Inter-Individual Variability of Bone Density and Morphology Distribution in the Proximal Femur and T12 Vertebra. Bone. 2014;60:213-220. DOI: 10.1016/j.bone.2013.12.019.
94. Chen H., Shoumura S., Emura S., Bunai Y. Regional Variations of Vertebral Trabecular Bone Microstructure with Age and Gender. Osteoporos Int. 2008;19;10:1473–1483. DOI: 10.1007/s00198-008-0593-3.
95. Nguyen T.V., Melville A., Nath S., Story C., Howell S., Sutton R., et al. Bone Marrow Recovery by Morphometry during Induction Chemotherapy for Acute Lymphoblastic Leukemia in Children. PLoS One. 2015;10;5:e0126233. DOI: 10.1371/journal. pone.0126233.
96. Deguette C., Chappard D., Libouban H., Airagnes G., Rougemaillart C., Telmon N. The Contribution of Micro-CT to the Evaluation of Trabecular Bone at the Posterior Part of the Auricular Surface in Men. Int. J. Legal Med. 2018;132;4:1231–1239. DOI: 10.1007/s00414-014-1139-1.
97. Wade A., Nelson A., Garvin G., Holdsworth D.W. Preliminary Radiological Assessment Of Age-Related Change in the Trabecular Structure of the Human os Pubis. J. Forensic Sci. 2011;56;2:312–319. DOI: 10.1111/j.1556-4029.2010.01643.x.
98. Jadzic J., Mijucic J., Nikolic S., Djuric M., Djonic D. The Comparison of Age- and Sex-Specific Alteration in Pubic Bone Microstructure: A Cross-Sectional Cadaveric Study. Exp. Gerontol. 2021;150:111375. DOI: 10.1016/j.exger.2021.111375.
99. Rodriguez-Florez N., Ibrahim A., Hutchinson J.C., Borghi A., James G., Arthurs O.J., et al. Cranial Bone Structure in Children with Sagittal Craniosynostosis: Relationship with Surgical Outcomes. J. Plast. Reconstr. Aesthet. Surg. 2017;70;11:1589–1597. DOI: 10.1016/j.bjps.2017.06.017.
100. Torres-Lagares D., Tulasne J.F., Pouget C., Llorens A., Saffar J.L., Lesclous P. Structure and Remodelling of the Human Parietal Bone: an Age and Gender Histomorphometric Study. J. Craniomaxillofac Surg. 2010;38;5:325–330. DOI: 10.1016/j.jcms.2009.07.012.
101. Boruah S., Paskoff G.R., Shender B.S., Subit D.L., Salzar R.S., Crandall J.R. Variation of Bone Layer Thicknesses and Trabecular Volume Fraction in the Adult Male Human Calvarium. Bone. 2015;77:120–134. DOI: 10.1016/j.bone.2015.04.03.
102. Lorc’h-Bukiet L.I., Tulasne J.F., Llorens A., Lesclous P. Parietal Bone as Graft Material for Maxillary Sinus Floor Elevation: Structure and Remodeling of the Donor and of Recipient Sites. Clin. Oral. Implants. Res. 2005;16;2:244–9. DOI: 10.1111/j.1600-0501.2004.01102.x.
103. Alexander S.L., Rafaels K., Gunnarsson C.A., Weerasooriya T. Morphological Characterization of the Frontal and Parietal Bones of the Human Skull. Technical Report. US Army Research Laboratory. Aberdeen Proving Ground, MD 21005-5066. 2017.
104. Hwang K., Hollinger J.O., Chung R.S., Lee S.I. Histomorphometry of Parietal Bones Versus Age and Race. J. Craniofac Surg. 2000;11;1:17–23. DOI: 10.1097/00001665-200011010-00004.
105. García Gil O., Cambra-Moo O., Audije Gil J., Nacarino-Meneses C., Rodríguez Barbero M.A., Rascón Pérez J., et al. Investigating Histomorphological Variations in Human Cranial Bones Through Ontogeny. C. R. Palevol. 2016;15:527–535. DOI: 10.1016/j.crpv.2015.04.006.
106. Mulder L., van Rietbergen B., Noordhoek N.J., Ito K. The Ability of Flat-Panel Fluoroscopy CT to Quantify Vertebral Trabecular Architecture. 56th Annual Meeting of the Orthopaedic Research Society. Poster No. 1389. 2010.
107. Yan Y.-B., Qi W., Wang J., Liu L.-F., Teo E.-C., Tianxia Q., et al. Relationship between Architectural Parameters and Sample Volume of Human Cancellous Bone in Micro-CT Scanning, Medical Engineering & Physics. 2011;33;6:764–769.
108. Amling M., Hahn M., Wening V.J., Grote H.J., Delling G. The Microarchitecture of the Axis as the Predisposing Factor for Fracture of the Base of the Odontoid Process. A Histomorphometric Analysis of Twenty-Two Autopsy Specimens. J. Bone Joint Surg Am. 1994;76;12:1840-1846. DOI:10.2106/00004623-199412000-00011.
109. Maquer G., Musy S.N., Wandel J., Gross T., Zysset P.K. Bone Volume Fraction and Fabric Anisotropy Are Better Determinants of Trabecular Bone Stiffness than Other Morphological Variables. J. Bone Miner Res. 2015;30:1000–1008. DOI:10.1002/jbmr.2437.
110. Lochmüller E.M., Kristin J., Matsuura M., Kuhn V., Hudelmaier M., Link T.M., et al. Measurement of Trabecular Bone Microstructure Does Not Improve Prediction of Mechanical Failure Loads at the Distal Radius Compared with Bone Mass Alone. Calcif Tissue Int. 2008;83:293–299 DOI 10.1007/s00223-008-9172-z.
111. Chirchir H., Kivell T.L., Ruff C.B., Hublin J.J., Carlson K.J., Zipfel B., et al. Recent Origin of Low Trabecular Bone Density in Modern Humans. Proc. Natl. Acad. Sci. U S A. 2015;112;2:366–371. DOI: 10.1073/pnas.1411696112. Epub 2014 Dec 22.
112. Zhou B. Bone Quality Assessment Using High Resolution Peripheral Quantitative Computed Tomography (HR-pQCT). Theses Doctoral. Columbia University Libraries. 2015.
113. Kirmani S., Christen D., van Lenthe G.H., Fischer P.R., Bouxsein M.L., McCready L.K., et al. Bone Structure at the Distal Radius During Adolescent Growth. J. Bone Miner Res. 2009;24;6:1033–1042. DOI: 10.1359/jbmr.081255.
114. Mitchell D.M., Caksa S., Yuan A., Bouxsein M.L., Misra M., Burnett-Bowie S.M. Trabecular Bone Morphology Correlates Wwith Skeletal Maturity and Body Composition in Healthy Adolescent Girls. J. Clin. Endocrinol Metab. 2018;103;1:336–345. DOI:10.1210/jc.2017-01785.
115. Gabel L., Macdonald H.M., McKay H.A. Sex Differences and Growth-Related Adaptations in Bone Microarchitecture, Geometry, Density, and Strength from Childhood to Early Adulthood: A Mixed Longitudinal HR-pQCT Study. J. Bone Miner Res. 2017;32;2:250–263. DOI:10.1002/jbmr.2982.
116. Farr J.N., Khosla S. Skeletal Changes Through the Lifespan–from Growth to Senescence. Nat. Rev. Endocrinol. 2015;11;9:513–521. DOI: 10.1038/nrendo.2015.89.
117. Määttä M., Macdonald H.M., Mulpuri K., McKay H.A. Deficits in Distal Radius Bone Strength, Density and Microstructure Are Associated with Forearm Fractures in Girls: an HR-pQCT Study. Osteoporos Int. 2015;26;3:1163–1174. DOI:10.1007/s00198-014-2994-9.
118. Kawalilak C.E., Bunyamin A.T., Björkman K.M., Johnston J.D., Kontulainen S.A. Precision of Bone Density and Micro- Architectural Properties at the Distal Radius and Tibia in Children: an HR-pQCT Study. Osteoporos Int. 2017;28;11:3189–3197. 2011 DOI: 10.1007/s00198-017-4185-y.
119.Yang H., Yu A., Burghardt A.J., Virayavanich W., Link T.M., Imboden J.B., et al. Quantitative Characterization of Metacarpal and Radial Bone in Rheumatoid Arthritis Using High Resolution-Peripheral Quantitative Computed Tomography. Int. J. Rheum. Dis. 2017;20:353–362. DOI:10.1111/1756-185X.12558.
120. Kocijan R., Muschitz C., Haschka J., Hans D., Nia A., Geroldinger A., et al. Bone Structure Assessed by HR-pQCT, TBS and DXL in Adult patients with Different Types of Osteogenesis Imperfecta. Osteoporos Int. 2015;26;10:2431–2440. DOI: 10.1007/s00198-015-3156-4.
121. Li X., Williams P., Curry E.J., Choi D., Craig E.V., Warren R.F., et al. Trabecular Bone Microarchitecture and Characteristics in Different Regions of the Glenoid. Orthopedics. 2015;38;3:163–168. DOI: 10.3928/01477447-20150305-52.
122. Knowles N.K., Langohr G.G.D., Faieghi M., Nelson A., Ferreira L.M. Development of a Validated Glenoid Trabecular Density- Modulus Relationship. J. Mech. Behav Biomed Mater. 2019;90:140–145. DOI: 10.1016/j.jmbbm.2018.10.013.
123. Jun B.J., Vasanji A., Ricchetti E.T., Rodriguez E., Subhas N., Li Z.M., Iannotti J.P. Quantification of Regional Variations in Glenoid Trabecular Bone Architecture and Mineralization Using Clinical Computed Tomography Images. J. Orthop. Res. 2018;36;1:85–96. DOI: 10.1002/jor.23620.
124. Frich L.H., Odgaard A., Dalstra M. Glenoid Bone Architecture. J. Shoulder Elbow Surg. 1998;7;4:356–361. DOI: 10.1016/s1058- 2746(98)90023-4.
125. Milenković P. Age Estimation Based on Analyses of Sternal End of Clavicle and the First Costal Cartilage Doctoral Dissertation. Belgrade, University of Belgrade School of Medicine, 2013.
126. Gao S., Ren L., Qui R., Wu Z., Li C., Li J. Electron Absorbed Fractions in an Image-Based Microscopic Skeletal Dosimetry Model of Chinese Adult Male. Radiat Prot Dosimetry. 2017;175;4:450-459. DOI: 10.1093/rpd/ncw372.
127. Baur-Melnyk A. Magnetic Resonance Imaging of the Bone Marrow. Springer Science & Business Media. 2012.
128. Bartl R., Frisch B. Biopsy of Bone in Internal Medicine – an Atlas and Sourcebook. London, Kluwer Academic Publishers, Dordrecht, 1993.
129. Arbabi A. A Quantitative Analysis of the structure of Human Sternum. J. Med. Phys. 2009;34;2:80–86. DOI: 10.4103/0971-6203.51934.
130. Chirchir H., Ruff C.B., Junno J.A., Potts R. Low Trabecular Bone Density in Recent Sedentary Modern Humans. Am. J. Phys. Anthropol. 2017;162;3:550–560. DOI: 10.1002/ajpa.23138.
131. Saers J. Ontogeny and Functional Adaptation of Trabecular Bone in the Human Foot. Doctoral Tethis. University of Cambridge, 2017.
132. Parisien M.V., McMahon D., Pushparaj N., Dempster D.W. Trabecular Architecture in Iliac Crest Bone Biopsies: Infra-Individual Variability in Structur al Parameters and Changes with Age. Bone. 1988;9;5:289–295. DOI: 10.1016/8756-3282(88)90012-9.
133. Van Dessel J., Huang Y., Depypere M., Rubira-Bullen I., Maes F., Jacobs R. A Comparative Evaluation of Cone Beam CT and Micro-CT on Trabecular Bone Structures in the Human Mandible. Dentomaxillofac Radiol. 2013;42;8:20130145. DOI: 10.1259/dmfr.20130145.
134. Ibrahim N., Parsa A., Hassan B., van der Stelt P., Aartman I.H.A., Nambiar P. Influence of Object Location in Different FOVs on Trabecular Bone Microstructure Measurements Of Human Mandible: A Cone-Beam CT Study. Dentomaxillofacial Radiology 2014;43:20130329. DOI:10.1259/dmfr.20130329.
135. Fanuscu M.I., Chang T.L. Three-Dimensional Morphometric Analysis of Human Cadaver Bone: Microstructural Data from Maxilla and Mandible. Clin. Oral. Implants Res 2004;15:213–218. DOI: 10.1111/j.1600-0501.2004.00969.x.
136. Shishkina E.A., Timofeev Y.S., Volchkova A.Y., Sharagin P.A., Zalyapin V.I., Degteva M.O., et al. Trabecula: a Random Generator Of Computational Phantoms for Bone Marrow Dosimetry. Health Phys. 2020;118;1:53–59. DOI: 10.1097/HP. 0000000000001127.

 

Conflict of interest. The authors declare no conflict of interest.
Financing. The study had no sponsorship.
Contribution. Article was prepared with equal participation of the authors.
Article received: 13.08.2022. Accepted for publication: 28.08.2022

Scroll to Top